本项目研究取得三大成果:①建立了一个非线性流体动力学的投影框架;研究出一种巧妙的数学方法,能至少能数值地构造一列车任意有界区域的边界上为零的正交归一化的管向量基,将不可压流体的各种动力学方程投影到这些基上,体压力项自动消失,构成一种非线性微分动力系统,并成功地应用于许攀非线性流体力学问题的研究。②发展了框架的分解算子与拟谱杂交方法。给出了后者的严格数学理论和前者的大量实际算例,证明了分解算法的有效性。③吸收了国际上的最新思想,发展了流体力学的一套规范体系。将N-S方程表示为在数学上等价但在实践上不等效的规范守恒形式。在此体系中不仅压力速度分离,而且可以独立地显式计算压力。为后续研究提供了更优途径。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
粗颗粒土的静止土压力系数非线性分析与计算方法
硬件木马:关键问题研究进展及新动向
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
服务经济时代新动能将由技术和服务共同驱动
非线性约束规划的新算法和理论研究
大气环境非线性优化控制的理论、算法与应用
非线性分式规划的理论与算法
图上的小波框架:理论与应用