Perovskites solar cells possess an excellent photovoltaic efficiency, they may be used in many areas, and the corresponding research is the hot issue nowadays. Hole transport materials (HTM) is a key part of the perovskites solar cells, which may influence the processes of the charge transport and separation, and the development of novel HTM is very important for perovskites solar cells. There are two unoccupied states in the valance band of Cu12Sb4S13 quantum dot, which enables that it possesses a high hole transport rate, and it is considered to be a good candidate as HTM in perovskites solar cells. Until now, many related research works are focused on the materials synthesis, the design and optimization of the cell device as well as the improvement of the photovoltaic performance, etc. However, there are few works on the deep understanding of the physical mechanism of the charge transport and separation. In the project, we try to explore the influence of the synthesis parameters, ligands-exchange and transition element doping (Fe and Zn) of Cu12Sb4S13 quantum dot on the surface state and defect state, which is used to realize the modulation of band gap. The influence of interface engineering technique on the interface combination state is also studied to control the interface structure of the quantum dot HTM and perovskites layer, which is used to realize the rapid transport of the charge. The influence of band gas and interface structure on charge transport is also investigated by using the first-principle calculation. The results in experiment and theory will explore the intrinsic physical mechanism of the charge transport of the Cu12Sb4S13 quantum dot HTM, which may provide the scientific reference for the deep and clear understanding on the improvement of the photovoltaic efficiency in perovskites solar cells.
钙钛矿太阳能电池的光电转换效率高,具有宽广应用前景,是当前研究热点。空穴传输层是钙钛矿太阳能电池的重要部分,影响电荷传输与分离过程,急需发展新型空穴传输材料。Cu12Sb4S13量子点价带中存在两个非占据态,具有空穴传输率高等特点,是极具发展潜力的空穴传输层材料。目前钙钛矿太阳能电池的相关研究集中在材料开发、器件结构优化和性能提升等方面,对于电荷传输与转移等微观物理机制的研究国内外少有报道。本项目拟探索Cu12Sb4S13量子点制备和配体交换工艺及过渡族元素(Fe、Zn)掺杂对表面态和缺陷态的影响规律,实现能带结构调控;通过量子点空穴传输层和钙钛矿吸收层的界面结构调控,探索界面工程工艺对界面态的影响规律,实现电荷快速传输。通过第一性原理计算研究能带结构和界面结构对电荷传输的影响规律,阐释量子点作为空穴传输材料的电荷传输微观物理机制,为提升钙钛矿太阳能电池的光电转换效率提供科学理论依据。
钙钛矿太阳能电池的光电转换效率高,具有宽广应用前景,是当前研究热点。空穴传输层是钙钛矿太阳能电池的重要部分,影响电荷传输与分离过程,急需发展新型空穴传输材料。Cu12Sb4S13量子点价带中存在两个非占据态,具有空穴传输率高等特点,是极具发展潜力的空穴传输层材料。目前钙钛矿太阳能电池的相关研究集中在材料开发、器件结构优化和性能提升等方面,对于电荷传输与转移等微观物理机制的研究国内外少有报道。本项目拟探索Cu12Sb4S13量子点制备和配体交换工艺及过渡族元素(Fe、Zn)掺杂对表面态和缺陷态的影响规律,实现能带结构调控;通过量子点空穴传输层和钙钛矿吸收层的界面结构调控,探索界面工程工艺对界面态的影响规律,实现电荷快速传输。通过第一性原理计算研究能带结构和界面结构对电荷传输的影响规律,阐释量子点作为空穴传输材料的电荷传输微观物理机制,为提升钙钛矿太阳能电池的光电转换效率提供科学理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
特斯拉涡轮机运行性能研究综述
内点最大化与冗余点控制的小型无人机遥感图像配准
氯盐环境下钢筋混凝土梁的黏结试验研究
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
基于前置透明电子/空穴传输层结构的单晶钙钛矿太阳能电池研究
共轭D-A聚合物在钙钛矿太阳能电池空穴传输层中的应用
“马鞍型”钙钛矿太阳能电池空穴传输材料合成及性能
高效稳定无空穴传输材料可印刷钙钛矿太阳能电池研究