The flywheel energy storage technology is a new type of conversion and storage for electric energy, and it is also a research hotspot of energy field in the world. There are a large number of studies on dynamic characteristics of energy storage flywheel in recent years. The flexible support with a single point has small load-carrying ability but very low friction loss, which is appropriate to be used in small flywheel system.. The application was presented to study mechanism on stabilizing by gyroscopic effect and rub-impact as the speed increasing of high-speed flywheel shafting with a single point flexible support. Optimization criteria for dynamic state and parameters between oil damper and shafting were also explored. Dynamic models of shafting includes positioning shaft were established firstly. Then mechanism of stabilizing by rubbing and parameters optimization of oil damper were carried. Finally the experimental device was built to verify the results of mechanism research and numerical simulation. Based on the results of verification, dynamic models of the shafting may be modified. The relations of between gyroscopic effect, rubbing characteristics, variable speed, location clearance and shafting dynamics behavior were obtained through the research, and optimization criteria for dynamic state and parameters between oil damper and shafting were also presented. These can be provided as theoretical foundation and technical guidance for dynamics design and stability control of high-speed flywheel shafting.
飞轮储能技术作为一种新型的电能转换型式和存储方式,是当今能源领域的研究热点。近年来,国内外对储能飞轮轴系动力学问题进行了大量研究。单点柔性支承的承载能力小,但摩擦损耗很低,适合应用于小型飞轮系统。. 本申请拟对单点柔性支承轴系陀螺力矩联合碰摩升速趋稳的机理,油阻尼器与轴系动力学状态、特性参数优化匹配准则进行研究。首先建立单点柔性支承-飞轮-定位轴系统的动力学模型;然后进行碰摩趋稳机理和油阻尼器特性参数优化匹配研究;最后建立轴系实验装置对机理和数值分析结果进行实验验证并修正动力学模型。通过研究建立陀螺力矩、碰摩特征、变转速和定位间隙与轴系动力学行为的联系,提出油阻尼器与轴系动力学状态、特性参数优化匹配准则,为高速飞轮轴系动力学设计和稳定性控制提供理论依据和技术指导。
飞轮储能技术作为一种新型的电能转换型式和存储方式,是当今能源领域的研究热点。近年来,国内外对储能飞轮轴系动力学问题进行了大量研究。单点柔性支承的承载能力小,但摩擦损耗很低,适合应用于小型飞轮系统。. 系统采用弹簧油阻尼器与宝石枢轴承构成下支承,构建了单点柔性支承的高速飞轮轴系。对单点柔性支承-飞轮轴系进行动力学建模,计算出飞轮轴系的动能函数、势能函数以及耗散函数,代入广义的拉格朗日方程得到轴系的动力学方程。建立阻尼器与轴系的动力学耦合方程、阻尼器与无上支承状态轴系的动力学耦合方程,基于能量耗散一致理论,推导油阻尼器能耗率与飞轮等效阻尼能耗率,求得飞轮等效阻尼,进而求取各阻尼的极值即为最优阻尼。讨论了油阻尼器参数对模态振型、模态阻尼比以及强迫振动的影响。. 通过飞轮上端与定位轴的碰摩实现轴系稳定旋转,轴系在启动后很窄的频带范围内呈现出振型交换现象,这是柔性阻尼支承轴系产生的一种新的动力学现象。通过强迫振动的理论计算和试验对比发现,轴系的动力学模型是合理的。飞轮启动升速时,碰摩抑制了轴系的低频进动。飞轮上端与定位轴间隙越小,轴系启动至稳定旋转的时间越短。对飞轮上端进行激振试验,模拟突加不平衡产生的低频进动,可以发现外部低频激励将会导致轴系产生周期1、周期2分岔、周期N和准周期运动。当激振功率超过一定值时,轴系将由准周期运动演变为混沌运动,进而出现全周碰摩,并发现高周频率。项目研究成果可以为高速飞轮轴系动力学设计和稳定性控制提供理论依据和技术指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
特斯拉涡轮机运行性能研究综述
中国参与全球价值链的环境效应分析
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
感应不均匀介质的琼斯矩阵
航空发动机双转子-支承-机匣耦合系统典型碰摩激振机理研究
汽轮发电机组轴系碰摩弯扭耦合振动特性研究
多自由度柔性转子-柔性静子系统的非线性全周碰摩研究
转子/定子碰摩系统的非线性模态分析与碰摩响应预测