This project proposes a new distributed battery energy architecture based on the Micro-Bank Module (MBM) for DC microgrids. The proposed MBM consists of a micro-bidirectional DC/DC converter, a micro-BMS and a cell bank. The benefits of the proposed architecture include: 1) no voltage sharing and no overcharge / overdischarge problem; 2) high compatibility and reliability 3) high energy utilization efficiency..Based on the characteristics of the battery, the multi-scale aged model is derived and with the introduced temperature and time coefficients, the close-loop Kalman filtering method is proposed to evaluate the State of the Charge (SOC) and State of the Health (SOH). Taking advantage of the battery recovery effect, a self-reconfiguration discharge strategy is proposed to further enhance the battery performance and discharge efficiency of the new Battery Energy Storage System (BESS). For optimization, an efficiency analytical model considering the battery recovery effect is proposed using the curve fitting method. Based on the proposed model and optimal charging curves, the fast charging and cell balance are achieved owing to the power decoupling capability of the MBMs to avoid the SOH reduction and aging problem of the batteries caused by the repeatedly charging with the conventional balancing method. The basic idea of this project is to combine the fundamental characteristics of the batteries and the power electronics interface effectively to improve the efficiency, reliability and compatibility of the system significantly. This provides the valuable power electronics theory and engineering experience for the large-scale BESS research topic.
本项目提出将单体电池组、微型双向变换器、微型电池管理系统集成为微储能模块;并以此构建储能矩阵与分布式系统,灵活实现不同电压、功率的储能需求目标;紧密结合电池底层特性,建立多尺度电池老化机理模型,引入温度系数和时间衰减系数,提出闭环补偿的电池容量与健康状态的卡尔曼滤波预测方法;建立电池恢复效应模型,提出微储能模块的自重组控制,提升电池系统储能利用率;基于微储能模块最优充电曲线,利用储能架构的功率解耦特性,实现高效、快速充电与外部均衡,避免传统均衡策略对电池反复充放电造成的容量与寿命衰减。通过上述研究,有效地将底层电池特性与上层电力电子接口与系统控制充分交叉融合,提高系统效能、可靠性与兼容性,为大规模电能存储课题提供电力电子理论基础与技术储备。
本项目提出将单体电池组、微型双向变换器、微型电池管理系统集成为微储能模块;并以此构建储能矩阵与分布式系统与宽禁带充电系统,灵活实现不同电压、功率的储能需求目标;紧密结合电池底层特性,建立多尺度电池老化机理模型,引入温度系数和时间衰减系数,提出闭环补偿的电池容量与健康状态的卡尔曼滤波预测方法;.建立电池恢复效应模型,提出微储能模块的自重组控制,提升电池系统储能利用率;基于微储能模块最优充电曲线,利用储能架构的功率解耦特性,实现高效、快速充电与外部均衡,避免传统均衡策略对电池反复充放电造成的容量与寿命衰减;通过上述研究,有效地将底层电池特性与上层电力电子接口与系统控制充分交叉融合,提高系统效能、可靠性与兼容性,相关技术获江苏省科技奖二等奖(排名第一)。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
基于分形L系统的水稻根系建模方法研究
特斯拉涡轮机运行性能研究综述
拥堵路网交通流均衡分配模型
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
配电网分布式光伏-退役锂电池储能的协同规划与运行控制研究
基于多类型大容量电池储能系统的风光发电平滑控制策略研究
基于欧拉滑动平均预测模型的分布式发电系统快速储能控制方法研究
基于不对称状态估计和功率控制的分布式混合储能系统研究