To address some key issues on modeling and control integration of intelligent and electric vehicles, the modeling methods on nonlinear vehicle dynamics, tire dynamics and vehicle instability dynamics are to be investigated to gain deep understanding on the mechanism of system coupling and instability. An integrated control between trajectory following and vehicle stability are to be proposed along with a dynamics control oriented sub-architecture with the aim to satisfy vehicle safety and performance as a whole. A unified modeling method with multi-domain energy is to be studied and proposed in order to understand the coupling mechanism through dynamic energy exchange. The energy management system covering between electric motor and battery and between regenerative braking and electric hydraulic braking is to be established under energy conservation law and with minimum energy consumption to be the objective. Further, the method for information fusion is to be studied based on multi-source information from environmental and vehicle on-board sensors. The fused information will then be used to improve the estimation of both vehicle and energy states. An integrated control method under a proposed control framework is to be established based on the synergic mechanism among material flow, energy flow and information flow with the aim to achieve the objectives of safety, handling and stability and energy efficiency. An integrated modeling method is to be developed including modeling on environment and environmental sensors. Finally, an integrated modeling and simulation environment is to be established along with hardware-in-the-loop simulation and an experimental vehicle to support the proposed research with testing and verification.
针对智能电动汽车一体化建模与集成控制的关键问题,开展多维非线性车辆动力学、轮胎动力学和失稳动力学的建模与非线性瞬态耦合和失稳机理的研究,建立以行驶安全和整车性能为控制目标的车辆轨迹跟随与稳定性控制的集成控制方法和动力学控制子系统架构。探索以能量动态转换过程描述的多能域统一建模方法,建立系统动态能量方程并开展基于动态能量交换的系统耦合机理分析,建立以最小能耗为控制目标、包括动力驱动与电池管理、电子液压制动与能量回馈制动等在内的集成控制方法和能量管理子系统架构。开展多源传感信息融合的建模与算法研究,开展基于信息融合的车辆与能量状态估计方法的研究;探索基于能量流、物质流和信息流协同机理、满足智能电动汽车行驶安全、操纵稳定性和能耗经济性等为控制目标的集成控制架构和集成控制方法。研究包括汽车行驶环境与环境传感模型在内的一体化建模与仿真方法,建立基于模拟仿真软硬件和实车一体化的测试验证平台。
智能电动汽车集环境感知、决策规划、运动控制和能量管理等于一体,在满足整车性能的同时还要实现包括自动巡航、安全避障、能量管理等诸多控制目标;其控制范围不断扩大、目标不断增多、结构也更加复杂;因此开展包括车辆失稳动力学、多能域统一建模和多源传感信息融合等方法的研究,并据此建立以行驶安全、整车稳定和最小能耗为控制目标的集成控制方法,对提升智能电动汽车技术的自主创新能力和自主品牌产业竞争力均具有重要意义。本项目针对智能电动汽车一体化建模与集成控制的关键问题,开展了多维非线性车辆动力学、轮胎动力学和失稳动力学的建模与非线性瞬态耦合和失稳机理的研究,建立了以行驶安全和整车性能为控制目标的车辆轨迹跟随与稳定性控制的集成控制方法。建立了以能量动态转换过程描述的多能域统一建模方法,和以最小能耗为控制目标、包括动力驱动与电池管理、电子液压制动与能量回馈制动等在内的集成控制方法。提出了多源传感信息融合的建模与算法,以及基于信息融合的车辆与能量状态估计方法;建立了基于能量流、物质流和信息流协同机理、满足智能电动汽车行驶安全、操纵稳定性和能耗经济性等为控制目标的集成控制架构和集成控制方法。依托本项目自主研发的智能电动汽车一体化模拟仿真平台已先后应用于通用、上汽、长安、东风、一汽、奇瑞等多家大型车企,获得业内广泛好评;研究成果打破了国外技术在该领域的垄断,达到国际先进水平。依托本项目自主开发的新型电液制动系统及电动汽车制动能量回收系统,其节能效率比传统制动能量回收效率高出10.9%,对于提高电动汽车续航里程具有重要意义。依托本项目研发的多源信息融合技术及开发的智能辅助驾驶系统的环境感知和数据融合系统已在东风汽车获得了实际应用,该系统性能总体优于现有量产系统,有望应用于自主研发的L2/L3级自动驾驶系统中,为突破国外零部件供应商的技术垄断提供了有力的技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
路基土水分传感器室内标定方法与影响因素分析
基于多模态信息特征融合的犯罪预测算法研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
电动汽车与智能电网融合系统的建模与协调控制
电动汽车非接触感应充电的智能建模与控制研究
仿生机器鱼建模与智能控制方法研究
磁悬浮定位平台建模与智能控制方法研究