多分辨率B-样条代数曲面研究及其可视化应用

基本信息
批准号:69903008
项目类别:青年科学基金项目
资助金额:13.00
负责人:冯结青
学科分类:
依托单位:浙江大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:方向,刘新国,陈为,宋哲
关键词:
多分辨率分析B样条代数曲线曲面
结项摘要

The design and edit of the complex topological geometric shape are difficulty and hot in the geometric modeling. In this project, we investigate some fundamental theories, surface design, multiresolution edit and rendering algorithms in the B-spline algebraic surface. The research contents and results mainly include: The tensor-product de Casteljau algorithm is investigated which is basic algorithm in the B-spline algebraic surface. The related fast algorithm is given. A new approach of Bernstein polynomial composition algorithm is proposed, which is based on polynomial interpolation and symbolic computation. It is faster one order than previous one. For surface deign method, a new fast distance surface computation approach is proposed based on optimized arc spline approximation for 2D NURBS curve skeletons. A convolution surface modeling based on line segment primitive with polynomial density distribution is also given such that modeling a surface of varying radius is possible. In general the B-spline algebraic surface is polygonized during shape modification. Some accurate free-form deformation algorithms are proposed for polygonal object modification. Based on automatically generated arbitrary lattice and Catmull-Clark subdivision volume, multiresolution geometric shape edit is achieved. A prototype system is also accomplished for shape edit. An accelerated ray-tracing B-spline algebraic surface is proposed to generate realistic image. In addition to above contents, a new isosurface extraction is deigned which can extract multi-isosurface in one pass. To sum up, the above fundamental theories and algorithms enrich the research of B-spline algebraic surface and also provide the basis for the applications of computer animation and scientific visualization

在代数曲面造型的研究中,设计方法、交互的形状操作及绘制技术是其中的难点。本项目着重研究基于双正交B- 样条小波基的代数曲面的基本性质、多分辨率B-样条代数曲面的设计托巫葱薷姆椒ā⑶娴氖凳被嬷萍际醯戎匾侍猓⒔芯砍晒τ糜诩负卧煨汀⒓扑慊⑻迨菰煨鸵约疤迨莸慕馕龌嬷频攘煊蛑小

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects

The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects

DOI:10.3389/fcell.2021.735374
发表时间:2021
2

Bousangine A, a novel C-17-nor aspidosperma-type monoterpenoid indole alkaloid from Bousigonia angustifolia

Bousangine A, a novel C-17-nor aspidosperma-type monoterpenoid indole alkaloid from Bousigonia angustifolia

DOI:10.1016/j.fitote.2020.104491
发表时间:2020
3

PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制

PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制

DOI:
发表时间:2021
4

人β防御素3体内抑制耐甲氧西林葡萄球菌 内植物生物膜感染的机制研究

人β防御素3体内抑制耐甲氧西林葡萄球菌 内植物生物膜感染的机制研究

DOI:
发表时间:2017
5

Locally efficient estimation in generalized partially linear model with measurement error in nonlinear function

Locally efficient estimation in generalized partially linear model with measurement error in nonlinear function

DOI:10.1007/s11749-019-00668-0
发表时间:2020

冯结青的其他基金

批准号:60743002
批准年份:2007
资助金额:19.00
项目类别:专项基金项目
批准号:60373036
批准年份:2003
资助金额:23.00
项目类别:面上项目
批准号:60933007
批准年份:2009
资助金额:200.00
项目类别:重点项目
批准号:60873046
批准年份:2008
资助金额:36.00
项目类别:面上项目
批准号:61472349
批准年份:2014
资助金额:85.00
项目类别:面上项目
批准号:61170138
批准年份:2011
资助金额:58.00
项目类别:面上项目
批准号:61732015
批准年份:2017
资助金额:285.00
项目类别:重点项目

相似国自然基金

1

复杂曲面造型的代数B-样条方法研究

批准号:60743002
批准年份:2007
负责人:冯结青
学科分类:F02
资助金额:19.00
项目类别:专项基金项目
2

代数样条曲面造型技术中的误差控制研究

批准号:60973155
批准年份:2009
负责人:伍铁如
学科分类:F0209
资助金额:33.00
项目类别:面上项目
3

多元(弱)样条、分片代数曲线及其应用

批准号:19871010
批准年份:1998
负责人:王仁宏
学科分类:A0503
资助金额:7.00
项目类别:面上项目
4

隐式代数曲面拼接、隐式样条及计算机实现

批准号:69773045
批准年份:1997
负责人:周蕴时
学科分类:F0209
资助金额:10.00
项目类别:面上项目