非线性时滞动力系统的动力学研究

基本信息
批准号:61563026
项目类别:地区科学基金项目
资助金额:37.00
负责人:张存华
学科分类:
依托单位:兰州交通大学
批准年份:2015
结题年份:2019
起止时间:2016-01-01 - 2019-12-31
项目状态: 已结题
项目参与者:颜向平,王仲平,史振霞,刘旭,李兴东,王小玲,李龙,戴志伟,胡志东
关键词:
中心流形法生物系统非线性时滞系统分岔极限环
结项摘要

Time delay effect has become an important factor which must be considered in many practical problems since the rapid development of the Control Theory, Sensor Testing Technology and Computer Control Technology as well as wide applications of Oscillation Active Control Technology in many engineering fields such as aviation, aerospace, vehicle, ship, machinery, construction and so on.The central task of delayed dynamical systems is the stability and bifurcation of feasible equilibria under the effect of time delay.The existing related research focused on mainly the stability and bifurcation of equilibria for delayed ordinary differential equation systems when coefficients are independent of delays and the associated characteristic equation has only a transcendental term as well as the stability and spatially homogeneous Hopf bifurcation of constant steady sates of delayed reaction-diffusion system with homogeneous Neumann boundary condition.There are few authors concerning with the stability and bifurcation of equilibria for delayed ordinary differential equation systems when coefficients are unrelated to delay but the corresponding characteristic equation includes multiple exponent terms or when coefficients depend on delay,stability and Hopf bifurcation of nontrivial steady state for delayed reaction-diffusion systems with homogeneous Dirichlet boundary condition and multiple different delays,and spatially inhomogeneous Hopf bifurcation of constant steady state for delayed reaction-diffusion systems with homogeneous Neumann boundary condition. Based on these reasons above, this item are plan to study the dynamics of nonlinear delayed dynamical systems by using some delayed models appearing in ecology and mechanism as research objects.

随着控制理论、传感测试技术、计算机控制技术的飞速发展以及振动主动控制技术在航空、航天、车辆、船舶、机械、建筑等工程领域的广泛应用,时滞效应已经成为许多实际问题中必须考虑的重要因素.时滞动力系统的核心任务是时滞影响下系统平衡点的稳定性和分岔.目前这方面的研究主要集中在系数不含时滞且特征方程仅有一个指数项的时滞常微分系统平衡点的稳定性和分岔以及齐次Neumann边界条件下时滞反应扩散系统常数稳态解的稳定性和Hopf分岔上,很少有人考虑在系数不含时滞且特征方程含有多个指数项或系数含有时滞的常微分系统平衡点的稳定性和分岔、齐次Dirichlet边界条件下具有多个不同时滞的反应扩散系统非平凡稳态解的稳定性和分岔以及齐次Neumann边界条件下时滞反应扩散系统常数稳态解空间非齐次的Hopf分岔.基于此,本项目拟计划以生态学和力学中出现的一些时滞模型为研究对象来分析非线性时滞动力系统的动力学.

项目摘要

在本项目的实施期间,项目组成员主要考虑了具有光滑边界的有界空间区域上满足齐次Neumann边界条件的反应扩散系统正常数稳态解的局部渐近稳定性、Turing不稳定性和Hopf分支的存在性、空间齐次Hopf分支的性质以及时滞参数对于具有离散时滞的常微分方程模型可行平衡点稳定性的影响. .对齐次Neumann边界条件下的反应扩散模型,通过详细分析系统在正常数稳态解处线性化系统的特征值问题获得了反应扩散系统正常数稳态解的局部渐近稳定性、Turing不稳定性和Hopf分支的存在性,同时借助于偏微分方程的规范型方法和中心流形约化分析了空间齐次Hopf的方向和相应分支周期解的稳定性..对具有离散时滞的常微分方程模型,通过选取时滞参数为分支参数和分析模型在可行平衡点处线性化系统的特征方程获得了平衡点的多次稳定性切换现象、稳定性切换的次数以及最终变为不稳定的现象. 对在稳定性切换时出现的Hopf分支,利用滞后型泛函微分方程的规范型方法和中心流形定理探讨了Hopf的方向和相应分支周期解的稳定性.

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于分形L系统的水稻根系建模方法研究

基于分形L系统的水稻根系建模方法研究

DOI:10.13836/j.jjau.2020047
发表时间:2020
2

氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响

氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响

DOI:10.16606/j.cnki.issn0253-4320.2022.10.026
发表时间:2022
3

一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能

一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能

DOI:10.16085/j.issn.1000-6613.2022-0221
发表时间:2022
4

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
5

拥堵路网交通流均衡分配模型

拥堵路网交通流均衡分配模型

DOI:10.11918/j.issn.0367-6234.201804030
发表时间:2019

张存华的其他基金

相似国自然基金

1

时滞耦合系统的非线性动力学

批准号:11032009
批准年份:2010
负责人:徐鉴
学科分类:A0702
资助金额:250.00
项目类别:重点项目
2

时滞反馈对非线性动力系统安全盆侵蚀的控制

批准号:10902071
批准年份:2009
负责人:尚慧琳
学科分类:A0702
资助金额:20.00
项目类别:青年科学基金项目
3

一类时滞反应扩散种群动力系统的动力学研究

批准号:61763024
批准年份:2017
负责人:颜向平
学科分类:F0301
资助金额:39.00
项目类别:地区科学基金项目
4

时滞非线性隔振器动力学特性及控制机理

批准号:11602141
批准年份:2016
负责人:孙秀婷
学科分类:A0702
资助金额:26.00
项目类别:青年科学基金项目