Bismuth oxyhalides (BiOX, X= F, Cl, Br, and I), known as novel ternary oxide semiconductors, are a typical class of visible-light-response materials, with variable chemical compositions and unique structures. Recently, our research group successfully constructed crossed BiOI nanoflake arrays (BiOINFs) via a facile successive ionic layer adsorption and reaction (SILAR) approach, then smartly integrated BiOINFs with the bio-recognition unit of acetylcholinesterase (AChE) as a photoactive electrode, and further developed a new rapid and valid visible-light-response photoelectrochemical sensor of organophosphate pesticides (OPs). Based on the previous work, this proposal will focuse on constructing novel nano-synergism visible-light-response photoelectrochemical strategies for the detection of typical environmental pollutants, including perfluorinated compounds (PFCs) and pesticides, oriented by "recognition-sensing" functions toward target pollutants. Nanostructured Bismuth-type semiconductors as photoactive units,nanotechnology and assembly of recognition units are combined together to construct the functionalized photoelectron-active interface with high selectivity toward the targets, and finally realizing highly sensitive and selective detection of PFCs or pesticides. It is expected that to explore the intrinsic relationship between "nanostructured interfaces" and "sensing performances" would facilitate the construction of high-performance photoelectrochemical sensors based on visible-light-response nanostructured semiconductors, and provide the theoretical base for designing functionalized interfaces. Moreover, to meet the ever-increasing demands for more sensitive, convenient, and miniature, the multi channel electrochemical detection technology based on screen-printed electrode arrays would be utilized to realize fast, simple and sensitive analysis of PFCs or pesticides. This project would prompt the development of interdisciplinary science between analytical chemistry, environmental science and materials science.
铋系半导体是一类新型的可见光光敏材料。近期,本申请者原位制备了碘氧化铋纳米片阵列薄膜,将生物识别单元和半导体光电转换特性相结合,实现了对有机磷类农药分子的可见光光电化学检测。本申请旨在构筑基于纳米结构铋系半导体的光电活性单元,以对目标污染物的"识别-传感"功能为导向,结合纳米技术、识别单元,构建对目标物具有特异识别功能的新型光电活性界面,建立基于铋系半导体的可见光光电化学检测新型POPs全氟化合物(PFCs)及农残等典型环境污染物的新策略。揭示"纳米结构界面" 与"传感性能"的内在联系,为构筑基于光响应半导体材料的高效光电化学传感器及功能化界面设计提供理论基础。同时,结合基于丝网印刷电极阵列的多通道电化学检测技术,实现样品中PFCs、农残等高灵敏高通量快速检测,促进光电化学检测向着更灵敏、快捷、微型化方向发展。此项研究可望促进分析化学、环境科学、材料学等学科的交叉融合。
研究建立包括POPs、农药残留在内的各种环境介质中有毒有害低剂量有机污染物的快速、灵敏、准确的检测技术是非常关键的。而铋系半导体是一类新型的可见光光敏材料。以对目标污染物的"识别-传感"功能为导向,结合纳米技术、识别单元组装体和信号放大技术构建了对目标物具有特异识别功能的新型光电活性界面,建立了新型的可见光光电化学检测新型POPs全氟化合物(PFCs)及农残等典型环境污染物的新策略。揭示了"纳米结构界面" 与"传感性能"的内在联系,构筑了基于光响应半导体材料的高效光电化学传感器及功能化界面设计。同时,结合基于丝网印刷电极阵列的多通道电化学检测技术,实现样品中PFCs、有机磷阻燃剂,农残,重金属离子及疾病标志物等高灵敏高通量快速检测,促进了光电化学检测向着更灵敏、快捷、微型化方向发展。此项研究促进了分析化学、环境科学、材料学等学科的交叉融合。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
基于全模式全聚焦方法的裂纹超声成像定量检测
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
上转换纳米材料在光动力疗法中的研究进展
半导体纳米材料光电生物传感研究
染料功能化半导体纳米材料的光电化学生物传感
基于光电化学活性MOFs“多位一体化”生物传感新策略研究
基于氧化还原蛋白质/酶与半导体纳米材料的光电化学传感及其作用机制