The development of novel, high performance electronic materials and the fabrication of electronic devices based on novel physics is the key to catching up with developed countries technologically. Novel low-dimensional electronic materials, low-dimensional electronic states, and artificial nanostructures attracted a lot of attention from the scientific and technical community, due to their exotic, spatially confined quantum states, superior electronic properties and prospects for applications. However, with large surface-to-bulk ratio of these novel materials and artificial structures, the influence of the surface to the overall properties of the materials is large. Due to limitations of conventional electronic transport measurement techniques in sample surface control, experimental results are often changed or obscured by surface related changes in the sample properties, resulting in controversies. On the other hand, commercial ultra-high vacuum 4-probe transport measurement systems lack the required temperature range, magnetic field strength and directional control as well as surface control of nanoelectronic devices during transport measurements. This project intended to develop an in-situ electronic transport measurement apparatus which operates under ultra-high vacuum and enables change of sample properties during the measurements, joining forces between surface science techniques and conventional transport measurement methods to systematically explore the sample quality parameter space (e.g. the strength of electron-electron interactions, electron-disorder interactions, spin-orbit interactions, etc.). This apparatus will not only clearly resolve the physics behind transport phenomena of low-dimensional materials and nanostructures, but will also effectively explore new functionalities in the materials in question. So far, there hasn’t been similar research reported domestically, and similar apparatus is rare internationally. The successful development of the proposed apparatus will not only fill the gap in the domestic research effort, but will also place related domestic research in a leading position internationally.
开发新型高性能电子材料,制备基于新颖物理原理的电子器件,是我们突破高技术瓶颈、赶超发达国家的关键。 新型低维电子材料、低维电子态和人工制造的纳米结构由于其奇异的空间受限的量子态、优异的性能和广阔的应用前景受到科技界的强烈关注。然而,传统的电子输运测量技术对材料表面的调控有很大局限性,对上述新型材料的实验结果往往随着样品表面性状的细微波动而改变,造成认识的不明确和争议的长期存在;而超高真空四探针系统在样品温度区间、磁场强度和角度,对纳米器件进行电输运测量的同时进行表面调控多有不足。 本项目拟研制一套的超高真空环境下的原位电子输运测量系统,在完整实现传统电子输运手段的同时允许高可控的原位样品改性。该装置既可清晰地揭示输运现象的内在物理原理,又可有效探索开发材料的新功能。目前,国内尚未见这方面的研究,国际上也鲜有同类型的仪器。该装置的成功研究将不仅填补国内空白,更使相关研究在国际上处于领先地位。
开发新型高性能电子材料,制备基于新颖物理原理的电子器件,是我们突破高技术瓶颈、赶超发达国家的关键。 新型低维电子材料、低维电子态和人工制造的纳米结构由于其奇异的空间受限的量子态、优异的性能和广阔的应用前景受到科技界的强烈关注。然而,传统的电子输运测量技术对材料表面的调控有很大局限性,对上述新型材料的实验结果往往随着样品表面性状的细微波动而改变,造成认识的不明确和争议的长期存在;而超高真空四探针系统在样品温度区间、磁场强度和角度、接触电阻调控,以及在对纳米器件进行电输运测量的同时进行表面调控多有不足。 本项目研制出一套的超高真空环境下的原位电子输运测量系统,在完整实现传统电子输运手段的同时允许高可控的原位样品改性。该装置既可清晰地揭示输运现象的内在物理原理,又可有效探索开发材料的新功能。目前该装置已成功研制,其磁场强度、样品温度、同次实验可掺杂离子、原子和分子类别等指标上均显著超越国际上已有同类型仪器的最高水平。此装置的成功研制不仅填补了国内空白,更使我国在原位量子输运研究方面在国际上处于领先地位。目前,已为此装置申请五项专利。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
低轨卫星通信信道分配策略
基于分形维数和支持向量机的串联电弧故障诊断方法
低温强磁场超高真空原位微区输运测量系统的研制
超高真空低温原位制备测量系统研制
MoS2薄膜的超高真空原位生长、表征和性质调控
纳米硅的超高真空电子束制备及其应用探索