中空纤维膜吸收技术是脱除CO2等温室气体较有前途的方法之一。前期研究发现,在中空纤维膜吸收技术的模型化研究中,忽视膜结构参数对传质的影响,是造成模型偏差大的关键因素之一。本项目将通过实验和理论研究,对近膜壁面处的溶质浓度分布进行模拟分析,建立包含体系物性、化学反应特性、流动状况以及膜结构参数的膜吸收过程的传质模型,并在此基础上探讨该过程的传质机理。. 模型化研究中,用Gz数来表征膜吸收过程的两相流动特性与溶质扩散系数的关系,用Ha数或化学反应增强因子E来表征体系的反应特性与传递性质的关系,用膜的孔间距与膜孔径的比值来表征膜结构参数的影响,关联膜吸收过程的传质模型,与实验值和文献值进行比较,建立一个适用范围广、预测准确性好的传质模型。并基于此探讨膜吸收过程中的传质强化手段,采用加入第三相的方式强化传质过程,系统深入研究各因素对强化过程的影响,以期推动该技术的工业化应用。
中空纤维膜吸收技术是脱除CO2等温室气体较有前途的方法之一。大多数研究者建立的传质模型差异较大,应用受到很大的制约,忽视虑膜结构对传质的影响是主要原因之一。.本研究从膜结构对近膜壁面传质行为的影响出发,考察了膜结构参数、两相流速、吸收剂粘度及吸收剂pH对膜吸收传质的影响及相互作用,并建立了中空纤维膜吸收传质模型,证明近膜壁面溶质浓度分布是膜结构参数影响膜吸收传质的本质。利用因次分析法,关联大量实验数据,拟合得到了较通用的传质关联式。.利用固体粒子在近膜壁面处的扰动,增大边界层内的溶质的混合程度,改善膜壁面处溶质的浓度分布情况。考察了固体粒子种类、固含率、液相流速、吸收剂pH、膜孔隙率等因素对强化作用的影响,实验结果表明固相粒子的加入可以使传质系数提高40%以上。本研究实验条件下,固含率范围在1.0-1.5kg/m3时得到了最大的传质系数与增强因子。
{{i.achievement_title}}
数据更新时间:2023-05-31
EBPR工艺运行效果的主要影响因素及研究现状
基于国产化替代环境下高校计算机教学的研究
一种基于多层设计空间缩减策略的近似高维优化方法
猪链球菌生物被膜形成的耐药机制
基于综合治理和水文模型的广西县域石漠化小流域区划研究
离子液体型新工质溶液降膜吸收过程传热传质及其强化机理研究
波纹板束上双面液膜反转对吸收传热传质的复合强化
离子液体吸收式制冷工质对竖直管内降膜吸收特性与强化传质机制研究
膜蒸馏过程传热传质强化的场协同研究