Terahertz (THz) radiation detection is of great importance in our national security and strategic space territories in the future. Blocked impurity band (BIB) detectors are the state-of-the-art choice for astronomical application worldwide. Remarkable progress has been made in Si-based BIB THz detectors (Zhu et al., 2017, APL) with a peak detectivity of 9e11 jones at 28μm. However, the cutoff wavelength of Si-based BIB detector is no longer than 35μm. Ge-based BIB detectors, which cover a wide THz band (40μm~240μm), experience low-quantum-efficiency, poor signal-to-noise ratio, and terrible uniformity. In this program, perfect absorber architecture is adopted in the design of ion-implanted BIB detector to develop novel perfect absorption BIB detector. Through the simulation of optical characteristics of various materials as well as perfect absorption structures in THz band, the ability of those architectures to manipulate optical field distribution is investigated. On the basis of preliminary simulation, proper structure is developed with the consideration of more physical effect in Ge, like extrinsic absorption and Frank-Keldysh effect, to acquire perfect absorption detector in THz band. CMOS-compatible semiconductor process will be optimized in order to assemble detectors with expected optical and electrical characteristics. Consequently, the perfect absorption BIB detector is developed to achieve international advanced level Ge-based BIB detector with high performance.
太赫兹(THz)波段探测在我国未来的国家安全及空间战略领域具有重要意义,国际上阻挡杂质带(BIB)THz探测器在天文探测领域发挥着重要作用,我国在Si基BIB THz探测器取得了一定的进展(Zhu et al., 2017, APL),在峰值28μm处的归一化探测率达到了9e11Jones,但是Si基BIB探测器的响应截止波长在35μm。Ge基BIB探测器响应虽然能够覆盖很宽的THz波段(40μm~240μm),却存在着量子效率低,信噪比差和均匀性差的问题。本项目提出将超吸收结构引入Ge基BIB器件中,研制新型超吸收BIB探测器。通过模拟材料、超吸收结构光学特性,获得合理的器件结构设计,开发CMOS兼容的Ge基BIB探测器工艺,发展出具有国际先进水平的高性能Ge基BIB THz探测器。
太赫兹(THz)波段探测在我国未来的国家安全及空间战略领域具有重要意义,国际上阻挡杂质带(BIB)THz探测器在天文探测领域发挥着重要作用,我国在Si基BIB THz探测器取得了一定的进展(Zhu et al., 2017, APL),在峰值28μm处的归一化探测率达到了9e11Jones ,但是Si基BIB探测器的响应截止波长在35μm。Ge基BIB探测器响应虽然能够覆盖很宽的THz波段(40μm~240μm),却存在着量子效率低,信噪比差和均匀性差的问题。本项目提出将超吸收结构引入Ge基BIB器件中,研制新型超吸收BIB探测器。通过模拟材料、超吸收结构光学特性,获得合理的器件结构设计,开发CMOS兼容的Ge基BIB探测器工艺,发展出具有国际先进水平的高性能Ge基BIB THz探测器。.项目执行期间,负责人成功制备出CMOS工艺兼容的高性能Ge基BIB探测器,响应范围涵盖40~165μm,将BIB探测峰值波长从28μm拓展到116μm,探测率达到1×1^13 Jones,大幅度提高我国在30~70μm的天文探测能力,为我国天文观测设备的发展提供了有力支撑。.受项目资助以第一或通讯身份发表SCI论文9篇,包括Photonics Research、IEEE Transactions on Geoscience and Remote Sensing、Applied Physics Letters、IEEE Transactions on Electron Devices等高水平论文,授权发明专利2项,以邀请报告或口头报告形式参加国内外重要学术会议3次。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
钢筋混凝土带翼缘剪力墙破坏机理研究
新型离子注入形成吸收层的平面型GaAs基阻挡杂质带探测器及其制备研究
石墨烯等离激元增强的Si基阻挡杂质带复合结构探测器研究
SOI基高速、窄谱带响应长波长Ge光电探测器研究
吸收倍增分离型波导Si/Ge雪崩探测器件的研究