Nuclear Magnetic Resonance Gyroscope (NMRG) represents the developing trend of the next generation gyroscope with high precision and micro scale, which will provide a revolutionary tool to change the whole military and civil navigation market. NMRG uses Vertical Cavity Surface Emitting Laser (VCSEL) to improve its integration level and decrease its volume. However, the low power laser emitted from the VCSEL decreases the polarization and detection sensitivity of the atomic spin, which has become the key obstacle to improve the precision of NMRG. This program focuses on the scientific issue of the low power laser degenerating the polarization and precession detection manipulation performance of NMRG, and proposes a new NMRG based on dual electron spins to overcome the problem, investigates the relaxation mechanism of the atomic source, optimizes the parameters for this NMRG, develops low power polarization and high sensitivity precession detection methods. As a result, this program expects to discovery new ways to improve the optic manipulation performance of NMRG with low power laser, and provide a significant manipulation method reference for developing high performance NMRG in the near future.
核磁共振陀螺代表了下一代高精度、微小型陀螺的发展方向,将为军用和民用导航市场提供革命性的新手段。该陀螺一般采用垂直腔面发射半导体激光器以提高系统集成度、减小系统体积。但是,该激光器具有低功率的缺陷,导致自旋系综的极化率与检测灵敏度下降,已经成为目前制约核磁共振陀螺精度提高的关键瓶颈。该项目针对低功率激光操控导致的核磁共振陀螺极化与检测性能退化问题,提出基于双电子自旋的核磁共振陀螺,分析原子源的弛豫机理,优化原子源的参数,研究该陀螺的低功率极化、高灵敏检测方法,探索在低功率激光下提高核磁共振陀螺光学操控性能的新途径,为未来发展高精度、微小型的核磁共振陀螺提供操控方法参考。
核磁共振陀螺代表了下一代高精度、微小型陀螺的发展方向,将为军用和民用导航市场提供革命性的新手段。本项目主要完成了原子源弛豫建模与参数优化、双电子自旋-双核自旋的耦合极化方法、双电子自旋-双核自旋的自旋进动检测方法、双电子自旋磁共振气室的制备与系统综合操控试验等研究内容,提出并验证了一套基于双电子自旋的核磁共振陀螺极化与检测方法,自主研制了双电子自旋磁共振气室,并应用于核磁共振陀螺原理样机,支撑了核磁共振陀螺原理样机精度的持续推高。发表学术论文9篇,其中SCI5篇;申请发明专利8项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于二维材料的自旋-轨道矩研究进展
基于全模式全聚焦方法的裂纹超声成像定量检测
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
基于图卷积网络的归纳式微博谣言检测新方法
基于电子自旋-核自旋耦合的高精度核磁共振磁强计极化与检测方法研究
基于电子-核子核磁共振陀螺仪的自旋弛豫时间延长研究
基于粒子激光散射极化的空气微粒检测与识别方法研究
基于45°线极化的双极化HRRP地面目标识别方法研究