Mammalian voltage-gated delayed rectifier outward potassium channel (IK) is mainly composed by Kv2.1 and Kv2.2 alpha-subunit. Since the first reported in 1992, the study on Kv2.1 for its regulation mechanisms by PKA and biological significance was in-depth and detail. Because PKA does not modify Kv2.2, regulation of Kv2.2 suffered a bottleneck. that Kv2.2 is main component in cortical neurons IK, and can be antidepressants suppression; the preliminary experiments show that the activation of PKC significantly modified Kv2.2 amplitude and voltage-gated characteristics, suggesting a completely different mechanism with Kv2.1 and PKC-mediated phospholation will be involved. However, no related report was found so far. This project will use the model of HEK-293 cells transfected Kv.2.2, cultured and acutely isolated cortical slices and neuron, combining techniques with current and voltage patch clamp recording, molecular biology, and immunohistochemistry, to explore (1) the mechanism of PKC-mediated regulation of Kv2.2; (2) the function of PKC-mediated modulation on voltage-gated characteristics and post-translational behavioral of Kv2.2, and (3) role in neuronal excitability and survival with PKC-mediated Kv2.2 regulation. Our study will provide a research platform for Kv2.2 study in in-depth and detail.
延迟整流外向钾通道(IK)由Kv2.1和Kv2.2亚单位组成。自1992年首次报道以来的大量研究表明,PKA通过磷酸化修饰Kv.2.1调控通道的电压门控特性和膜上的活动,且有重要意义。由于PKA不修饰Kv2.2,有关Kv2.2的调控研究遭受瓶颈。我们近期研究发现,Kv2.2在皮层神经元IK中占据重要地位,可被抗抑郁症药物抑制;前期的预初实验显示,激活PKC可改变Kv2.2的电流幅度和通道电压门控特性,说明存在着与Kv2.1不同的、PKC介导的磷酸化调控机制,与PKA调控Kv2.1的途径完全不同,但国内外尚无相关报道。本课题将用转染Kv.2.2的细胞株、皮层脑片和培养神经元,结合膜片钳记录、分子生物学和免疫组化等研究方法,系统探讨PKC介导的Kv2.2调控机制、该调控对通道电压门控特性和膜上活动的影响,以及调控的生物学意义。为深入研究Kv2.2离子通道的结构与功能、调控与生理作用提供平台。
细胞膜钾离子通道参与了,在众多的钾通道中,延迟整流外向钾通道(IK)因为其大电导、慢失活等特性,在神经细胞动作电位的形成中起到摘要作用。 IK主要由Kv2.1和Kv2.2亚单位组成。自1992年首次报道以来的大量研究表明,PKA通过磷酸化修饰Kv.2.1调控通道的电压门控特性和膜上的活动,且有重要的生理病理意义。但对于Kv2.2的研究报道很少,可能是因为PKA不修饰Kv2.2的缘故,也导致Kv2.2的调控研究遭受瓶颈。我们前期研究发现,Kv2.2在皮层神经元IK中占据重要地位,可被抗抑郁症药物抑制;前期的预初实验还显示,激活PKC可改变Kv2.2的电流幅度和通道的电压门控特性,说明存在着与Kv2.1不同的、PKC介导的磷酸化调控机制。与PKA调控Kv2.1的途径完全不同,但国内外尚无相关报道。本课题通过利用转染Kv.2.2的细胞株、皮层脑片和培养神经元模型,结合膜片钳记录、分子生物学和免疫组化等研究方法,系统探讨PKC介导的Kv2.2调控机制、该调控对通道电压门控特性和膜上活动的影响,以及调控的生物学意义。我们的结果显示,PMA和Bryostatin-1激活PKC,磷酸化修饰KV2.2后可以导致Kv2.2激活曲线的飘移。分别点突变了几个主要的位点后发现,PKC对Kv2.2的调控作用是通过磷酸化Kv2.2通道上的S481和S488位点所致。免疫荧光检测没有发现PMA应用后对Kv2.2通道膜上分布有明显的影响。电生理记录海马神经元结果显示,PKC激活修饰Kv2.2通道后,明显抑制神经元的动作电位发放频率。此外,我们还意外地发现,Kv2.2其实也是受PKA激酶的修饰调控的,只是调控的位点与PKC的不同。我们的这些研究和发现,对同行深入研究Kv2.2离子通道的结构与功能、调控与生理作用提供了依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway
IRE1-RACK1 axis orchestrates ER stress preconditioning-elicited cytoprotection from ischemia/reperfusion injury in liver
电压门控性钾通道电压门控机制的新探索
电压门控钾离子通道门控动力学研究
植物电压门控钾离子通道AKT1的分子机制
电压门控性钾通道在糖尿病认知功能障碍中的作用及机制研究