Organic light-emitting diodes (OLEDs) based on exciplex hosts or emitters have aroused much attention recently due to their superior electroluminescence performance. Our preliminary results unveil that OLEDs based on exciplex-forming co-host showed remarkable charge transport properties, lower driving voltage and much higher device efficiency than those of using conventional host materials. Benefiting from the intermolecular donor-acceptor (D-A) construction and sufficiently small singlet-triplet (S1-T1) splitting ΔEST (< 0.1 eV) in the exciplex system, the exciplex based OLEDs exhibit thermally activated delayed fluorescent (TADF) characteristics which would result in an internal quantum efficiency of 100%. However, their working mechanisms are still unclear and rarely reported. In this project, we will deeply investigate the mechanisms of exciplex-based OLEDs and then make use of these findings to design more D-A pairs with the ultimate targets to achieve high-efficiency and color-stable white OLEDs with a power efficiency of greater than 100 lm/W, C.I.E. (x,y) of (0.35-0.40, 0.38-0.43) and extremely reduced efficiency roll-off of less than15% when the brightness is increased from 100 to 5000 cd/m2. With further optimization of the device structures, we will also explore highly stable exciplex-based white OLEDs with a T50 lifetime of longer than 2500 hours (at an initial luminance of 1000 cd/m2).
近年来,使用激基复合物作为主体或者发光体引起了OLED领域专家们的关注,掀起了一阵研究的热潮。据我们调查研究表明,基于激基复合物主体的OLED器件可以获得比传统主体更好的器件性能,他具有优秀的空穴传输能力和电子传输能力,可以拥有超低的工作电压,达到节约能源的效果。在拥有超低电压的同时,它能够依旧保持、甚至达到更高的器件效率。与传统主体相比,激基复合物主体作为新型的OLED器件结构,本身就具备了热激活延迟荧光的效应,可以有效的同时利用单线态激子与三线态激子,实现100%的内量子效率。本项目将致力于深入探究激基复合物形成的机理与条件,进一步设计和选择优秀的激基复合物组合,制备出功效超过100 lm/W的白光器件。同时,对激基复合物做主体的器件结构进行优化和改进,力求控制单色光的器件效率滚降在10%以内(亮度从100 cd/m2-5000 cd/m2),提高基于激基复合物的OLED器件的效率。
本项目首先设计并优化了两种新型激基复合物组合:Trz-PhCz:B4PyMPM和mCBP:B4PyMPM,对比传统激基复合物,在开启电压、功效、稳定性等多个方面,这两者均体现出优秀的性能,在探索过程中,我们获得了大量激基复合物机理,可用于指导高效激基复合物主体设计与应用。我们首先制备了蓝、绿、黄、橙和红光等单色光OLED,器件EQE分别达到了26.3%,25.0%,30.7%,32.5%和26.2%,器件开启电压均在2.2-2.5 V之间,验证了理论的可行性。基于此,我们以双发光层结构制备了WOLED,通过调控发光层之间的间隔层探索了发光单元之间的能量传递机制,最终获得了36.9%的最大EQE、137.4 lm/W的最大PE,且器件的滚降仅5.4%(@1000 cd/m2),展现出超高的稳定性。随后,我们配合叠层结构、自主研发的内外光提取手段、封装技术,在大面积(10*10 cm2)的基板上获得了足够满足照明需要的器件,拥有高达126.2%的EQE和150.7 lm/W的PE,器件T50寿命高达12,600小时(@15,000 cd/m2)。同样结构的小型器件,功效为173.7 lm/W(@1000 cd/m2),滚降小于15%,C.I.E.坐标(0.36,0.43),显色指数88。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
上转换纳米材料在光动力疗法中的研究进展
聚酰胺酸盐薄膜的亚胺化历程研究
自组装短肽SciobioⅡ对关节软骨损伤修复过程的探究
基于天然气发动机排气余热回收系统的非共沸混合工质性能分析
激基复合物体系构建具100%内量子效率的有机电致白光器件
基于宽角干涉增强的高效顶发射白光有机发光器件及其稳定机制研究
新颖微纳结构界面调控的高效率柔性白光OLED器件
高效激基复合物体系有机白光二极管及其动态特性和延迟发光