Electrochemical biosensor is one of the most popular research areas in current analytical chemistry. The greatest advantage of electrochemical biosensor is its biosensing interface which integrates the functions of target recognition, signal amplification and electron transfer. However, this advantage is, to certain extent, a bottleneck of further improvement of the performance of electrochemical biosensor. The construction of recognition-detection double interfaces bioelectroanalysis platform is expected to fundamentally overcome this bottleneck. In this project, specific recognition interface based on nanoporous membrane is prepared and the recognition/detection dual-interface based bioelectroanalysis platform is constructed using the common material electrode such as glassy carbon for the detection of electrochemical probes. And then, G-quadruplex-hemin and 2D Xene materials are introduced to amplify the signal and intensify the sensitivity of sensing interface. As results, ultrasensitive bioelectroanalysis platform with dual interfaces for specific recognition and nanostructure sensing interface is established. Furthermore, redox probes are assembled onto the electrode to prepare functional sensing interface and ratiometric ultrasensitive dual-interface bioelectroanalysis platform based on specific recognition interface and functional sensing interface are fabricated. Therefore, novel methods with good specificity, ultrahigh sensitivity and excellent accuracy for the detection of carcino-embryonic antigen, carbohydrate antigen153, human epidermal growth factor receptor 2, microRNA-21, microRNA-122 and exosome in real samples like serum, blood, cells and cell culture medium are established. This research will provide a different idea for electrochemical biosensing platform and reference techniques for early diagnosis of breast tumor.
电化学生物传感器是目前分析化学最热门的研究领域之一。集识别、信号放大和电子传递等功能于一体的传感界面是其最大的优势,一定程度上也成为其发展的瓶颈。构建基于识别传感双界面的生物电分析平台,有望从根本上克服这一瓶颈。本项目拟基于纳米多孔膜制备生物识别界面,结合检测电极,构建基于识别检测双界面的高灵敏生物电分析平台;通过G-四链体-Hemin催化诱导沉积和二维X-烯纳米传感界面,构建基于特异识别纳米传感双界面的超灵敏生物电分析平台;进而组装氧化还原探针制备功能传感界面,构建基于特异识别功能传感双界面的比率型超灵敏生物电分析平台,建立血清、全血或细胞内癌胚抗原、糖类抗原153、人表皮生长因子受体-2、microRNA-21、microRNA-122及MCF-7细胞培养液中外泌体等肿瘤标志物的检测新方法。该研究可为生物传感平台开发提供新思路,并可为乳腺癌等肿瘤的早期诊断和疗效检测提供参考手段。
本项目以阳极氧化铝等纳米多孔膜制备独立生物识别界面,以玻碳等基体电极或各种功能化修饰电极作为独立电化学传感界面,以跨膜传输的物质的电化学氧化还原电流为检测信号,构建了一种通用型双界面生物电分析平台;通过引入磁流体等增强信号物质本身在纳米通道内的物理占位、通过双重识别引入SiO2纳米粒子和G-四链体-血红素(Hemin)形成及其作为DNA酶催化诱导沉积以增强生物识别对信号物质传质的影响程度等信号放大策略,并通过优化传感界面上的修饰材料,构建了特异识别纳米传感双界面的超灵敏生物电分析平台;最后通过制备组装二茂铁、普鲁士蓝、金属硫化物胶体体等氧化还原探针的功能传感界面,构建了基于特异识别功能传感双界面的比率型超灵敏生物电分析平台。这些平台已被成功用于CEA、CA153、HE4、cTnⅠ、thrombin、HER-2、miRNA-21、let-7a和HeLa 细胞分泌的外泌体等肿瘤标志物的高灵敏、高特异性电化学检测,并实现了血清、细胞或细胞培养液中肿瘤标志物的准确检测。研究结果可为新型生物分析平台开发提供了新思路,并为相关肿瘤的早期诊断和疗效监测提供了参考手段。项目共完成研究论文16篇,已发表10篇,授权国家发明专利2项。培养博士生2名,硕士生8名。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
基于DNA三链SERS传感平台构建及生命分析应用
石墨烯生物功能界面的构建及生物传感研究
基于DNA链置换反应构建通用型生物传感平台及其多元逻辑分析应用
基于超分子组装体的多位点生物分子传感平台的构建及应用