Increasing the speed and pressure of the axial piston pump can greatly improve the power to weight ratio of the hydraulic system, meanwhile, which brings many scientific problems to the vibration and acoustic reduction of the axial piston pump. In this project, the axial piston pumps with high speed and high pressure, the coupling and the motor are regarded as a rotor system. According to the complex structure and dynamic characteristics of the axial piston pump, the dynamic behavior of the rotor system is researched by using the theory of rotor dynamics. And using the vibration transmission theory of complex mechanical system to analyze the evolution law of the vibrational and acoustical characteristic. Centering on the key scientific problems, we carry out the following fundamental research work. Firstly, considering the influence of structural parameters and working load, the multi parameter nonlinear dynamic model of the pump group rotor system is established, and its dynamic behavior is analyzed. Then, analyzing the effect of various factors such as the constraint conditions of the rotating components, the mechanism of gap annular flow is explored, the nonlinear dynamic model of the pump rotor system is improved and the dynamic characteristics is carried out. Finally, the multidimensional vibration transmission model of the axial piston pump is established by using the method of structural admittance, and the evolution law of the vibro-acoustic characteristic is studied deeply. The expected results of this project mainly include the dynamic characteristics of the axial piston pump rotor system under the action of the gap annular flow, and the axial piston pump vibration transmission and the noise evolution under high speed and high pressure. These results will lay a theoretical basis and technical guidance for revealing the vibration mechanism and realizing the precise vibration control of the axial piston pump with high speed and high pressure.
提高轴向柱塞泵转速和压力能显著提高液压系统功重比,同时给其减振降噪带来很多科学难题。本项目提出将高速高压轴向柱塞泵、联轴器及电机视为一个转子系统,针对轴向柱塞泵结构及其动力学复杂性,采用转子动力学和复杂机械系统振动传递理论研究转子系统动力学行为及声振特性演化规律,围绕与之相关的关键科学问题,开展以下基础研究工作:1.建立泵组干转子系统多参数非线性动力学模型,考虑结构参数及工作载荷影响,分析其动力学行为;2.考虑旋转组件周围场约束条件等多个因素的影响,探索间隙环流产生机理,完善泵组转子系统非线性动力学模型并进行动力学特性分析;3.采用结构导纳法建立轴向柱塞泵多源多维振动传递模型,深入研究其声振特性演化规律。预期获得的“间隙环流作用下的泵组转子系统动力学特性”和“高速高压工况下轴向柱塞泵振动传递及噪声演化规律”等成果,将为揭示高速高压轴向柱塞泵振动机理,实现精准振动控制奠定理论和技术基础。
国内外针对轴向柱塞泵振动机理开展了大量卓有成效的研究工作,但基于转子动力学和机械系统振动理论开展相关研究并不多见。.四年来,本项目采用上述理论,分别以普通工业泵和十一柱塞航空泵为对象展开深入研究,具体工作和结论如下:.1.建立十一柱塞航空泵干转子系统集中质量模型,采用传递矩阵和有限元求解临界转速,分析轴承支撑刚度及轴向支撑位置对临界转速的影响。结果表明,转子系统集中质量建模可实现临界转速的快速求解,提高轴承支承刚度、减小支承间距可有效提高一阶临界转速。.2.基于排量不变原则建立十六组不同轴径比的航空泵转子系统数学模型,分析轴径比对临界转速的影响。结果表明,减小轴径比降低了转子系统临界转速,而且随轴径比减小率增大,临界转速减小率增大,二者具有线性关系。.3.建立带间隙环流的航空泵湿转子系统流固耦合动力学模型,分析间隙比对临界转速和不平衡响应的影响。结果表明,间隙环流降低了临界转速,间隙比越大降低越明显;间隙环流导致缸体不平衡响应出现两个共振峰和一个反共振峰;而且降低了第一个共振峰幅值,间隙比越大越明显,但对反共振峰几乎无影响。.4.基于上述湿转子系统模型,分析转速和油液粘度对间隙环流流动特性的影响。结果表明,流体粘度和转速增大,流固耦合增强,流场质点运动半径和运动速度增大,而且越靠近缸体的区域流场流速和涡量越大。.5.建立普通工业泵机械振动和流体振动传递路径模型,分析振动传递规律。结果表明,前者主路径为:柱塞滑靴组件→斜盘→变量机构→后壳体,后者主路径为:柱塞→滑靴组件→斜盘→变量机构→后壳体;柱塞、滑靴、斜盘、变量机构和圆柱滚子轴承对振动影响较大,在流体振动传递中起到主要作用。.研究工作为轴向柱塞泵振动研究提供了新思路,为其精准振动控制提供了理论支持;研究成果为国产十一柱塞航空泵动力学设计提供了理论指导,为飞机等液压系统振动建模分析提供了支持,预期对推动高速高压航空泵发展具有一定的应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
宽弦高速跨音风扇颤振特性研究
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
敏感性水利工程社会稳定风险演化SD模型
采用黏弹性人工边界时显式算法稳定性条件
简化的滤波器查找表与神经网络联合预失真方法
高速高压轴向柱塞泵微尺度液膜动力学研究
高速高压轴向柱塞泵的多场耦合理论研究
多转子-结构-介质系统的声振耦合动力学
高压海淡水轴向柱塞泵平面配流副跨尺度混合非光滑表面关键特性研究