Thermoelectric materials are a class of functional materials that can convert the electric energy into thermal energy or convert the waste heat into electricity. They hold significant promise in modern industries, with applications in many areas such as civil engineering, aerospace science and military technology. Multilayered thermoelectric materials have higher thermoelectric conversion efficiency than bulk thermoelectric materials. They offer a huge potential of benefits significantly contributing to the economy and environment. Thermoelectric materials are typically brittle semiconductors. Mechanical and functional failures in these materials due to cracking are common. An understanding of the fracture mechanics governing their properties is essential for improving the reliability, extending the lifetime, enhancing the thermoelectric conversion efficiency of thermoelectric materials. This project is a platform for fracture mechanics of multilayered thermoelectric materials. It aims at the effects of cracking on their fracture behavior and thermoelectric conversion performance. This is achieved through theoretical modelling, numerical simulation and experimental investigation. The purposes of the project are (1) to develop a series of fracture mechanics and thermoelectricity converting analysis models for multilayered thermoelectric materials with cracks; (2) to identify the fracture criteria of thermoelectric materials; (3) to understand the fracture behavior of multilayered thermoelectric materials; (4) to explore the mechanism of the effect of cracking on the thermoelectric conversion efficiency of multilayered thermoelectric materials. The proposed research will advance our basic understanding of the science and technology of the fracture mechanics of multilayered thermoelectric materials and will significantly strengthen our expertise in the reliability and functionality design of multilayered thermoelectric materials and their devices.
热电材料能够实现热能和电能间的相互转换,已被广泛应用于民用、航天和军事领域,体现出巨大的商用价值。与块热电材料相比,热电多层材料具有较高的热电转换效率,应用更为广泛。然而,热电多层材料在制备和使用过程中,极易产生裂纹等缺陷,从而削弱其断裂强度,影响其热电转换效率。因此,研究热电多层材料断裂及其对热电转换性能的影响,具有重要理论意义和工程价值。本项目首次针对热电多层材料的断裂问题,系统研究它们在热-电-力载荷单独及耦合作用下的开裂行为,基于理论分析、数值模拟和实验研究,建立合理的断裂力学及热电转换性能分析模型,解释热电多层材料的断裂力学行为,揭示热电多层材料的开裂对其热电转换效率的影响规律。本项目涉及固体力学学科前沿,具有较强挑战性,项目研究内容对建立热电多层材料断裂力学理论体系具有重要推动作用,同时可为热电功能器件的可靠性设计和热电转换性能的评价方法提供技术支撑。
热电材料能够实现热能和电能间的相互转换,已被广泛应用于民用、航天和军事领域,体现出巨大的商用价值。与块热电材料相比,热电多层材料具有较高的热电转换效率,应用更为广泛。然而,热电多层材料在制备和使用过程中,极易产生裂纹等缺陷,从而削弱其断裂强度,影响其热电转换效率。因此,研究热电多层材料断裂及其对热电转换性能的影响,具有重要理论意义和工程价值。本项目首次针对热电多层材料的断裂问题,系统研究它们在热-电-力载荷单独及耦合作用下的开裂行为,基于理论分析、数值模拟和实验研究,建立合理的断裂力学及热电转换性能分析模型,解释热电多层材料的断裂力学行为,揭示热电多层材料的开裂对其热电转换效率的影响规律。本项目涉及固体力学学科前沿,具有较强挑战性,项目研究内容对建立热电多层材料断裂力学理论体系具有重要推动作用,同时可为热电功能器件的可靠性设计和热电转换性能的评价方法提供技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
监管的非对称性、盈余管理模式选择与证监会执法效率?
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
多层热电复合材料断裂力学模型和有效热电性能研究
脉冲强化热电制冷的瞬态热输运特性及热电转换规律
原子/分子接触的热电转换效率及其输运性质的研究
硫族层状热电材料辐照缺陷对热电性能影响机制研究