突水地质灾害的防控和注浆机理是目前岩溶隧道施工中的重大技术和理论难题,本项目以岩溶介质的演化规律和赋存形态为基础,以大量工程实践为依托,借助于理论分析、程序开发和试验模拟等手段,系统研究高压动水岩溶隧道注浆防突水机理和数值试验平台。通过研究岩溶区被注介质的演化规律、赋存形态及其概化模型,建立适用于岩溶介质的岩体概化模型;通过研究特定浆液的时变特性与动力学扩散理论,获得相应的动力学控制方程组;结合特定浆液的时变特性和本构关系,采用时空双域离散技术,推导控制方程组的离散格式,借助特殊边界处理技术,开发考虑浆、水、岩三者相互作用的注浆数值试验平台;改进室内注浆试验系统,研究浆、水、岩三者的相互作用关系,使之与数值试验平台的计算结果相互验证,获得地下水流场、浆液运移场、岩体应力应变场之间的相关性;给出高压注浆堵水的最小安全厚度、注浆参数和结束标准,研究成果对岩溶隧道突水地质灾害的防控具有重要意义。
采用资料调研、理论研究、数值模拟、经验类比、现场测试和室内试验等方法,以岩溶介质的演化规律和赋存形态为基础,依托工程实践,系统研究了岩溶隧道注浆防突水机理和数值试验平台。首先基于岩溶介质的演化规律和赋存形态,结合岩土体介质的概化模型,对岩溶区被注介质概化模型的适用性进行了研究,提出了适合于不同潜在突水体类型的被注介质概化模型。然后分别采用渗流理论和流体动力学理论对浆液的运移机理进行了研究。针对被注介质属于多孔介质,且采用注浆花管进行注浆时,提出其浆液扩散模式属于复合模式,而非单一的球形或柱形模式,并对其运移控制方程进行了推导,证明了球形和柱形经典扩散方程是该控制方程的两种特殊形式,验证了控制方程的正确性。在流体动力学扩散理论方面,基于质量守恒和动量守恒定律,对浆液在管道等优势扩散通道中的运移进行了研究,并采用时-空双域离散技术,完成了相关理论研究成果的数值离散和编译工作,形成了相应的计算程序,但其计算效率尚有待提升。之后分别对多孔介质、裂隙介质和双重介质的浆液运移进行了研究。对于多孔介质模型,对外水压力作用下的浆液运移过程进行了数值仿真计算,验证了前面针对花管注浆所提出的浆液运移的复合模式。对于裂隙介质,以单平板裂隙和多平板裂隙为例,对其扩散形态和模式进行了研究,结果表明注浆初期其扩散形态变化较大,但在注浆稳定后,均呈现U形,与前期的室内试验结果相符。针对双重介质,以管道-孔隙双重介质为被注介质,构建较为复杂的管道网络,并对其注浆过程进行计算,结果表明在岩溶管道周边的岩体较为致密、完整性较好的条件下,浆液和地下水主要在管道这一优势通道中运移,而在岩石孔隙中的运移量极小,基本可以忽略不计,从计算效率和准确度上来说,建议对于该类潜在突水体,采用单一的裂隙(管道)介质模型进行研究较为科学。最后,为了使研究成果能够指导注浆设计与施工,对注浆防突技术和应用进行了研究。为了掌握岩溶隧道的突水特征完成了相关的突水仿真计算,然后将注浆防突技术根据潜在突水体的地质特征分为断层破碎带、岩溶管道、溶蚀裂隙三类进行了分别研究,提出了相应的注浆原则和方案,并结合现场突水的一个岩溶隧道工程,对注浆防突设计与施工进行了总结,得出地质分析、精准探测、针对性的治理原则、科学的注浆技术是完成岩溶突水注浆防突的关键,为相关研究成果的现场应用奠定了基础,也可为后续类似工程提供借鉴。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
氯盐环境下钢筋混凝土梁的黏结试验研究
深埋岩溶隧道劈裂型突水机理与防突厚度预测研究
岩溶隧道溶洞突涌水机理与灾害前兆实时监测预测
采动作用下岩溶陷落柱突水机理的试验研究
深部采动诱发高压水导升与突水路径演化过程试验研究