The proportion of energy consumed by human society for information communication and information processing is increasing. How to reduce the energy consumption of devices has become a key research topic in the world. Optical switches are the most widely used devices in the field of information, and it is important to reduce the power consumption of the switches. For the conventional optical switches, in order to avoid the optical absorption loss caused by the metal electrodes, an isolation layer needs to be added between the electrodes and the optical waveguide core layer. However, this has also become one of the important factors that limit the efficiency of electrode modulation. To solve this problem, in this project we proposed to use the graphene as the modulating electrodes, and buried the graphene electrodes inside the organic polymer optical waveguide to realize the efficient modulation for the signal light in the waveguide core layer, thereby reduce the power consumption of the device. This is also benefit from the processing technology of the organic polymer material is simple, flexible and so on, which is helpful to buried the graphene electrodes inside the waveguide. Based on this idea, in this project we will study the physical model of the interaction between the graphene and the optical mode in polymer waveguide, and optimize the device structure. The graphene transfer technology and waveguide fabricating technology will be also studied and optimized. Based on these technologies, the low-power consumption of organic polymer optical switches with the buried graphene electrodes will be developed. This project will provide some new ideas and technical support for the applications of graphene electrodes in organic polymer optical switches, optical modulator and other organic optoelectronic devices.
人类社会用于信息通信和信息处理所消耗的能源比重越来越大,如何降低器件的能耗已成为国际上的重点研究课题。光开关作为信息领域应用最为广泛的器件,降低该器件的功耗具有重要的意义。在传统的光开关器件中,为避免金属电极引起光学吸收损耗,需要在电极和光波导芯层之间加一层隔离层,但这也成为限制其电极调制效率的重要因素之一。为解决该问题,本项目提出采用石墨烯作为调制电极,并结合有机聚合物材料加工工艺简单、灵活等优点,将其掩埋于有机聚合物光波导的内部,以实现石墨烯电极对波导芯层中信号光的高效调制,进而达到降低器件功耗的目的。本项目基于这一思路,将从构建石墨烯与聚合物光波导模式相互作用的物理模型入手,优化器件结构,并通过对石墨烯转移技术和波导制备工艺的研究,研制出基于掩埋型石墨烯调制电极的低功耗有机聚合物光开关器件,为石墨烯电极在有机聚合物光开关、光调制器件等有机光电子器件方面的应用提供新思路和技术支撑。
光开关与光开关阵列是构建光通信网络的重要器件,降低该器件的功耗具有重要的意义。然而在传统的光开关器件中,为避免金属电极引起光学吸收损耗,需要在电极和光波导芯层之间加入一层隔离层,但这也成为限制其电极调制效率的重要因素之一。为解决该问题,本项目提出采用石墨烯作为调制电极,并将其掩埋于聚合物光波导的内部,以实现石墨烯电极对波导芯层中信号光的高效调制,达到降低器件功耗的目的。本项目进展顺利,主要进展包括:(1)构建了单层石墨烯与聚合物光波导模式相互作用的物理模型,明晰了石墨烯电极引起的光学吸收损耗与信号光偏振模式(TE和TM偏振)及波导结构之间的关系,阐明了石墨烯电极产生光学吸收损耗的相关物理机制,进而确定了器件的工作模式;(2)开发了石墨烯在聚合物薄膜表面的湿法转移技术及其掩埋在有机聚合物波导的内部的工艺路线,并在实验上对理论模型进行了验证;(3)结合湿法和干法刻蚀技术探索了石墨烯加热电极的制备方法,并将其掩埋在矩形波导、脊形波导和加载条形波导的内部,研制出基于掩埋型石墨烯加热电极的热光开关器件,有效提高了电极的加热效率,降低了器件的功耗;(4)合成出高性能极化聚合物电光材料,并引入单层石墨烯作为极化和调制电极,研制出基于掩埋型石墨烯极化/调制电极的高速电光开关器件,有效提高了器件的极化效率和调制效率。在研究过程中,全面解决了石墨烯电极掩埋于聚合物波导内部的物理模型建立、石墨烯转移技术、器件工艺制备和性能测试等关键技术,为石墨烯电极在有机聚合物波导光开关和光调制器件等有机光电子器件方面的应用提供了新思路和技术支撑。按照本项目的年度计划并结合研究工作的实际情况,经过项目组成员的共同努力,全面完成项目的各项指标。项目执行期间,共发表标注本项目资助的SCI论文30篇,EI论文1篇,同时申请国家发明专利20项,其中已获得授权国家发明专利6项,超额完成了预期指标。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
上转换纳米材料在光动力疗法中的研究进展
固溶时效深冷复合处理对ZCuAl_(10)Fe_3Mn_2合金微观组织和热疲劳性能的影响
全石墨烯电极柔性透明有机发光器件研究
基于双发色团非线性分子的掩埋型共面波导电极聚合物电光调制器研究
基于类电磁诱导透明效应的高性能石墨烯全光调制器件研究
关于石墨烯全光调制机理和调制特性的研究