Graphene like 2D materials with layered structure have tunable band-gap in space variation and are thus poised to play important roles in revolutionizing nano-opto mechanical system, energy storage devices, and photocatalysis, etc. It is greatly restricted due to the lack of the inherent storage mechanisms of these exotic 2D materials. In this proposal, the graphene like 2D materials and their devices are chosen as the object of study, and the project aims at addressing three critical issues, such as, how to realize an accurate characterization on micro friction property because of the difficulties for the susceptibility of crystal boundary and defect; how to determine the effective Hamiltonian for describing the electrochemical mechanical coupling properties; how to build the lithium cell in situ test by using electrochemical strain technique. We will develop the effective methods to design on the electrochemical mechanical coupling properties for nano open system by combining quantized field theory and electrochemical reaction theory. The frictional coefficient of the graphene like 2D materials will be characterized by combining AFM friction module and micro tribology theory, and the lithium cell in situ test will be built by combining AFM electrochemical strain module and the lithiation of the graphene like 2D materials nanostructured. The understanding on energy storage mechanism is very important for the graphene like 2D materials in the interdisciplinary field of mechanical electrical chemical mechanical physics, and it may become a point of growth for the new subject of micro-electrical-mechanical engineering.
类石墨烯二维材料具有空间变化可调带隙,在纳米光机械系统、电存储和光催化等领域潜在广泛用途。因储锂机制不清晰,严重限制了该类二维材料及器件在储能领域的应用。本项目选择类石墨烯二维材料及其微装置为研究对象,拟开展“类石墨烯晶界和缺陷非常敏感难以准确表征其微摩擦性能”、“DFT模拟如何确定有效哈密顿量描述类石墨烯电化学-机械耦合性能”和“基于电化学应变探针技术实现锂电池原位测试”关键科学技术问题的研究。结合量子场论和电化学反应动力学等理论建模,发展DFT有效方法模拟设计类石墨烯纳米开放体系电化学-机械耦合性能的方法。基于AFM探针技术,摩擦力模块结合微摩擦学理论表征二维材料摩擦系数,电化学应变模块结合锂化二维材料微电极搭建锂电池原位测试系统。探索类石墨烯二维材料的储能机制是微机电-电化学-量子物理多学科交叉研究的尝试,有望成为微机电工程发展新的学科增长点。
类石墨烯二维材料具有空间变化可调带隙,在纳米光机械系统、电存储和光催化等领域潜在广泛用途。项目基于DFT结合微纳加工优化设计二维材料性能,探求纳米摩擦耗散机理,采用微加工技术实现阻变高密度存储与机电耦合纳米摩擦发电机应用。共发表SCI收录论文25篇、授权国家发明专利12项、实现成果技术转移1项。.(1)γ电离辐照是调控类石墨烯二维材料摩擦学和电学性能的有效方法。电离辐照诱导缺陷使单层WSe2由直接带隙半导体转变为间接带隙半导体,从初始状态的p型半导体材料转变为n型半导体材料。辐照引入缺陷对研究光电器件和纳米摩擦器件具有重要意义。.(2)纳米结构化等微纳加工技术是调控类石墨烯二维材料电化学性能的有效手段。高温固相反应一步合成的MoS2碳纤维交错构成三维网络结构,其贡献的可逆比容量为539 mAh/g。Mo掺杂VS2微米花的析氢转化效率和电化学活性面积提高27.2和19.2倍。有望作为非贵金属析氢电催化剂、可穿戴电化学储能或柔性电子产品和超级电容器潜在广泛应用。.(3)微加工技术大幅提升纳米薄膜阻变性能实现高密度存储。基于多层感知神经网络的模拟操作,HfOx器件的32态QC行为显示出对手写数字的识别准确率提高到接近90%。OPT可解决氧基忆阻器中周期性诱导的耐久度失效问题。钙钛矿光电传感器阵列将物体成像和识别功能集成神经网络中,并实现可视化图像的自适应调节。在自动驾驶和智能机器视觉中具有巨大潜力。.(4)纳米摩擦耗散机理与机电耦合摩擦发电机。探针在晶界处滑动时受到棘轮效应和压电效应的双重作用,对单层多晶纳米片摩擦性能产生影响。磁耦合和屈曲双稳态机构的旋转式摩擦电纳米发电机实现自供电温度监测和无线传输。利用临界剪应力分布图分析摩擦性能对于纳米机电系统的驱动部件和摩擦可靠性设计具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
卫生系统韧性研究概况及其展望
钢筋混凝土带翼缘剪力墙破坏机理研究
基于二维材料的自旋-轨道矩研究进展
微纳结构多孔C/NiO复合材料的结构设计与储能特性研究
过渡金属氧化物与石墨烯微纳复合材料的设计合成及其储锂机理研究
三维纳米孔-石墨烯微纳结构的设计与制备及电化学储能性能研究
氧化锡@超薄类石墨烯碳球材料的设计合成与储锂机理研究