The characteristic micro- and nano-structures on the material surface show various unusual surface effects such as microscale, Mesoscopic, and quantum effects. These nonclassical physical effects make the hypernormal optical, acoustical, electrical, magnetical, and mechanical properties or fuctions can be achieved on the material surface by various permutation and combination of those characteristic structures. Therefore, manufacturing ability of these peculiar functions on the surface of micromechanical components, by realization of the characteristic micro- and nano-structures, will play a revolutionary role in the applications of coming arisen industry, such as our national economy, human life, national defense, and social development, etc. With the aid of ultrashort pulse laser (femtosecond and picosecond) technologies, in the research of this applying project, we will reveal the forming mechanism and law of micro- and nano-structures on the metal surface and successively acquire new principle and technology of the fast and controllable characeristic structural formation for the manufacture of the functionalization on the micromechanical components surface, by exploring the High-order nonlinear processes and phenomena produced in the ultrafast interaction of femtosecond laser with the metals in the both of theoretical and experimental. Finally, based on the achieved mechanism and technology, we will furnish a model-machine of picosecond laser producing characteristic micro- and nano-structures on metal surface by optimization of the parameters and integration of the technologies.
物质表面微纳米尺度的特征结构具有显著的小尺寸效应、介观效应和量子效应等奇异的表面效应,这些非经典效应使得人们能够通过各种特征尺寸结构的不同组合与排列来获得宏观物体表面超常的光、声、热、电、磁、以及力学等性能或功能。因此,通过微纳米尺寸特征结构实现特殊表面功能的微机械零部件的加工制造,对未来新兴产业中的诸多应用将起着革命性的作用,对我国的国民经济、国防能力、人类生活和社会发展等都将产生重要的影响。本项目应用超短脉冲(飞秒与皮秒)激光技术,从理论与实验两方面探索激光与金属表面超快相互作用产生的高阶非线性过程与现象,揭示表面微纳米特征结构的成形机理与规律,创立结构特征可控的微机械零部件表面超常功能化快速制造的新原理、新技术;在成形机理与规律的研究基础上,通过参数优化与技术集成,自主研制出皮秒激光非平面金属表面微纳米特征结构加工的设备样机。
本项目采用飞秒激光技术开展材料表面微纳米拓扑结构化的基础研究。通过该项目的研究,获得了以下主要成果:首次提出了亚波长周期性拓扑结构自形成的表面双等离子共振(STPR)机制,建立了锁相STPR烧蚀的理论模型及其诱导表面结构化的充要物理条件,实现了大面积快速及非平面表面的周期性纳米结构的制备;率先在碱溶液中采用飞秒激光技术制备出吸收率达到95%以上的黑硅;采用飞秒激光溅射沉积方法,实现了硅基表面石墨烯膜的制备;通过在金属材料表面设计和制备微纳米拓扑结构,获得了材料热辐射波长存在选择性抑制的新结果;应用第一性原理的模拟计算,首次发现生长在Al (111) 表面的锗烯中在介于K点与Г点之间存在非对称的能带结构,表现出各向异性的狄拉克点。项目研究共发表论文16篇,其中SCI论文12篇、EI论文3篇,最高单篇论文影响因子为8.539;申请国家发明专利6项,其中授权4项;培养研究生9名,其中博士生5名。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
低轨卫星通信信道分配策略
非锁模激光超短脉冲的研究
超短脉冲激光诱导微纳结构调控材料摩擦性能
浸润性可控表面结构的飞秒激光微纳制造基础研究
超短脉冲激光诊断微腔的光学特性