To consume carbide slag and char powder large-scale, improving high energy consumption and poor kinetics condition during CaC2 production process, the new technology of CaC2 preparation from co-molding of carbide slag and char powder was proposed. Synergy control idea of interface structure was suggested for improvement of thermal strength, activity, electrical resistivity and hydration resistance of CaO carbon-containing pellet (CCCP). The interface structure of particles was controlled by using bridge structure produced from binder, studying heat-resisting and catalytic characterization of bridge, achieving improvement between thermal strength and activity. The Ca-water interface structure was controlled by using controlling the CaCO3 layer characterization of CCCP surface. .Plastic mass analogous coking process was formed by using design of organic, inorganic ingredient and function for binder. The controlled mechanism of interface structure was revealed by using the control of composition, quantity and distribution of plastic mass structure. The thickness, compactness and distribution of the CaCO3 layer of CCCP were controlled through roasting atmosphere (CO2/O2) and temperature, and thus revealing the controlled mechanism of Ca-water interface structure of CCCP. The synergy strengthened mechanism of thermal strengthen, activity and electrical resistivity of CCCP was indicated by understanding the effects of bridge on performance of CCCP to provide scientific foundation of CaC2 preparation from co-molding of carbide slag and char powder.
为了大规模消纳电石渣与兰炭粉,解决电热法生产电石高能耗及动力学条件差等问题,项目提出了电石渣与兰炭粉共成型制备电石原料技术。为了提高CaO含碳球团热强度、活性,电阻率及防水性,提出了基于界面结构调控强化球团性能的思路。通过粘结剂形成“桥”结构调控颗粒界面结构,探索桥的耐热与催化特性,实现颗粒界面结构强化热强度与活性协同控制;通过球团表面CaCO3层特征调控钙水界面,实现球团表面钙水界面结构的控制。.通过粘结剂中有机、无机组分与功能协同设计、形成类似炼焦过程的“胶质体”;通过控制“胶质体”结构组成、数量及分布,揭示粘结剂强化颗粒界面结构调控机制。通过控制煅烧气氛(CO2/O2)和温度,调控球团表面CaCO3层厚度及致密性,揭示钙水界面结构调控机制。通过理解“桥”结构对球团性能控制规律,揭示活性与热强度、电阻率协同调控机制,为电石渣与兰炭粉共成型制备电石技术提供科学依据。
为了解决电石渣大量堆积,污染环境,占用土地等问题,同时减少天然石灰石的过渡开采,项目提出了利用电石渣与兰炭粉共成型制备氧化钙含碳球团技术。氧化钙含碳球团的热强度、活性和防水性能是三个重要指标,为了让三个重要性能满足电石生成的要求,项目提出界面结构与性能协同调控思路。通过钙-碳界面结构调控,强化球团热强度与活性的协同调控;通过钙-水界面调控,强化球团防水性能的提高。基于天然石灰石煅烧后的氧化钙微结构,利用氧化钙仿生结构,强化球团中氧化钙颗粒结构调控,进而强化其热强度。.通过诱导剂、成型工艺、煅烧工艺控制,强化氧化钙颗粒成核、生长、烧结过程控制,强化球形仿生结构的形成,增强了氧化钙含碳球团热强度。氧化钙颗粒的球形化度是仿生结构的关键参数,随着球形化度的增加其热强度增加,形状因子φ为98.3%,球团的热强度为39.67MPa;氧化钙颗粒的适度烧结是孔、桥结构调控方法,通过烧结过程控制孔的均匀性和桥的致密度,进而增加球团热强度。为了提高含碳球团的分子通道和原子通道的协同,项目提出了电石渣与焦煤共热解制备钙焦思路,结果表明700℃热解得到的钙焦的平均TCS达到40MPa以上,采用CO2碳化包覆法使钙焦的耐水化性大于30天。研究发现CaO的水化活性与晶粒大小并无直接的函数关系,CaO的水解反应由三维球对称扩散(D4)模型控制,研究表明CaO的水化活性与VF200成正比、与平均孔径和颗粒大小成反比。利用用石墨和CaCO3对电石渣掺杂改性,能使CS-CaO表面生成一层CaCO3保护层抑制其烧结,发现添加5%石墨和5%CaCO3后CS-CaO的水化活性分别提高了19.32%和28.44%。.通过解析氧化钙含碳球团界面结构与热强度、活性、防水性能的协同调控机制,建立了电石渣基氧化钙含碳球团界面结构调控方法,为电石渣与兰炭粉循环利用制备电石技术提供了重要理论依据,为提高化工冶金领域含碳球团性能提供了重要解决思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
双吸离心泵压力脉动特性数值模拟及试验研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
含碳球团还原过程热态强度的变化规律与形成机理
含能废弃物-煤复合含碳球团固结机理与强度控制研究
含碳球团的还原——制造与应用
基于生物质含碳官能团选择性热解-氧化的协同转化制氢