Trace molecule detection faces an urgent need in the field of national economy. To address the problem of weak interaction between infrared light and molecular, this project puts forward a method to detect the infrared spectra of trace molecule, based on the surface plasmonic resonance mode in the single crystal graphene resonator, which greatly enhances the molecular vibrational signal. The finite element method is first utilized to investigate the excitation mechanism of surface plasmon in single crystal graphene, and the physical models are established for infrared spectrum enhancement and dynamically tuning of surface plasmon. Then, the design method to obtain graphene nanoresonator with high absroption in broad wave band will be developed. Sequently, the key nano-patterning techniques of the large area single crystal graphene is developed to abtain the controllable fabrication of the electro-tuned spectral enhancement device. Finally, the obtained device is used to perform the infrared spectrum measuring experiment and trace molecule detecting experiment. The proposed novel infrared spectrum spectroscopy technology provides a novel way to break through the technical bottleneck of traditional infrared spectrum spectroscopy technology, which has great loss and low light energy utilization, and lays a theoretical and technical foundation for exploring the next generation ultra high sensitivity infrared spectroscopy technology.
面向国民经济领域迫切需要痕量分子检测这一重大需求,针对红外光波与分子相互作用极其微弱这一难题,提出激发单晶石墨烯纳米谐振器的表面等离激元电磁模式,极大增强分子振动信号,实现痕量分子红外光谱探测的新方法。采用有限元数值计算法,研究单晶石墨烯表面等离激元的激发机理,建立红外光谱增强及动态调控的物理模型;发展宽波段高吸收石墨烯纳米谐振器的设计方法,突破大面积单晶石墨烯纳米图形化加工的关键工艺,获得电调谐光谱增强器件可控制备的关键技术;完成痕量分子及单层分子的红外光谱探测实验。本项目发展的新型红外光谱探测方法,为突破传统红外光谱增强技术存在损耗大及光能利用率低的技术瓶颈提供了新思路,为探索下一代超高灵敏度的红外光谱技术奠定理论及技术基础。
面向国民经济领域迫切需要痕量分子检测这一重大需求,本项目提出了利用腔增强结构激发单晶石墨烯的表面等离激元电磁模式,极大增强分子振动信号,实现痕量分子红外光谱探测的新方法。紧密围绕单晶石墨烯局域表面等激元激发及调控机理、宽波段可调谐石墨烯纳米谐振器的设计方法、石墨烯纳米谐振器可控制备以及痕量分子红外光谱探测实验等方面开展研究,取得了一些创新性的研究成果:建立了单晶石墨烯表面等离激元基本物理模型,实现了宽波段红外光谱增强器件的设计;研究了石墨烯晶畴成核和生长的行为,实现了单晶石墨烯薄膜的生长;突破了石墨烯纳米图形化微纳加工工艺,制备了腔增强石墨烯等离激元谐振器,将石墨烯器件吸光效率从2.3%提高至92%。进一步研制了高灵敏度中红外石墨烯光子传感芯片,实现了 8nm 超薄 PEO 分子薄膜红外光谱信号的探测,增强倍数最高可达162,相比目前文献报道的提高了一个数量级,为发展下一代超高灵敏度的红外光谱技术提供了新的途径。.在本项目的资助下,发表与项目相关、已经标注本项目的学术论文15篇,其中SCI收录14篇,EI收录1篇;作邀请报告9次;授权发明专利2项;获省部级二等奖等奖励12项;入选国家级青年人才、重庆市杰青、重庆英才·青年拔尖人才等。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
基于石墨烯表面等离激元的红外光场调控研究
石墨烯动态调控手性表面等离激元结构研究
面向热光伏的表面等离激元增强可见-红外光谱转换调控研究
石墨烯-金属复合纳米结构的表面等离激元手性机理研究