2,5-Dimethylpyrazine (2,5-DMP) is an important flavor compound in Chinese Maotai-flavored liquor. Rational control of 2,5-DMP concentration in Chinese liquor will have a positive effect on the product quality of it. However, the biosynthetic pathway of 2,5-DMP has not been clarified, which has hindered the researchers’ understanding on the source of flavor compounds in Chinese liquor. In the earlier stage, the researcher has selected a strain which could efficiently produce 2,5-DMP from threonine and been identified as Bacillus subtilis. In this project, the intermediate metabolite in 2,5-DMP synthetic pathway will be firstly verified using isotope tracing method. Then, 2,5-DMP synthetic enzymes will be identified through the methods of bioinformatics, transcriptomics and enzyme sequencing, respectively. In the end, these identified 2,5-DMP synthetic enzymes will be verified using the methods of enzyme catalysis and gene knock-out. The research conclusion will clarify the synthetic mechanism of 2,5-DMP in B. subtilis. And it will be benefit for the clarifying of bio-synthetic pathway of other flavor compounds. Meanwhile, the concentration of flavor compounds will be manipulated more rationally through the accomplishment of the project.
2,5-二甲基吡嗪(2,5-DMP)是酱香型白酒中重要的风味化合物,其浓度的理性控制对白酒品质的提升有重要作用。然而,迄今为止2,5-DMP微生物合成机制并未阐明,限制了研究者对白酒风味化合物来源的认识及进一步理性设计。研究者前期在酱香型白酒酒曲中筛选得到一株枯草芽孢杆菌,后者可以以苏氨酸为底物高产2,5-DMP。本项目拟以此为基础,首先利用同位素示踪法确定2,5-DMP合成过程中间代谢产物;其次通过生物信息学分析、转录组学、活性酶测序等技术鉴定2,5-DMP合成相关酶;最后体内体外实验相结合确定相关蛋白功能;研究结果不仅可以阐明枯草芽孢杆菌中2,5-DMP合成机制,为白酒中其他具有风味贡献化合物的微生物合成机制研究提供科学例证,同时也可以为后续白酒中风味化合物浓度的理性设计奠定理论基础。
烷基吡嗪是一类含有烷基基团的含氮杂环化合物,作为重要的风味贡献化合物广泛存在于发酵食品中。其中,2,5-二甲基吡嗪(2,5-DMP)、三甲基吡嗪(TMP)和四甲基吡嗪(TTMP)因具有浓厚的烘烤气味,对发酵食品中的风味贡献更加独特。然而,由于烷基吡嗪结构的复杂性,其微生物合成机制研究一直难有进展。在前期工作中,研究人员筛选得到一株可以利用L-苏氨酸为底物合成2,5-DMP的枯草芽孢杆菌,并以此为基础,利用底物饲喂、同位素示踪及全细胞催化,确定了L-苏氨酸可作为2,5-DMP微生物合成的唯一底物来源,氨基丙酮为2,5-DMP合成过程中关键中间代谢产物。利用基因敲除与回补、纯酶催化研究手段,确定了苏氨酸脱氢酶(TDH)是2,5-DMP微生物合成机制中的关键酶,并由此解析了完整的2,5-DMP微生物合成机制。在此基础上,本研究推测2,5-DMP微生物合成机制可能适用于其他含单甲基半环吡嗪的微生物合成,并成功推测并验证了TMP的微生物合成机制。基于2,5-DMP微生物合成机制的解析,本研究构建了一株可以利用L-苏氨酸为底物高产2,5-DMP的基因工程菌株,首次实现了2,5-DMP高效的生物转化。该研究有助于拓展人们对烷基吡嗪微生物合成机制的认知,对于工业上实现2,5-DMP的高效生物合成具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
重组枯草芽孢杆菌合成甘露聚糖的调控机制研究
枯草芽孢杆菌表面活性素合成及调控研究
枯草芽孢杆菌fengycin合成的信号分子调控机理研究
枯草芽孢杆菌合成γ-聚谷氨酸的高产机理研究