The noise of high-speed vehicles is a kind of complex noise source, in order to comprehensively understand the mechanism of the noise generation and therefore control it in the end, quantitative measurement of these noise sources are very important prerequisite. The project will study the quantitative reconstruction of the Kirchhoff diffraction acoustic holography based on the aperture error correction. By extending the Kirchhoff diffraction integral from the closed surface area to the finite plane area, we establish the mathematical relationship between holographic aperture angle and the quantitative accuracy of holographic reconstruction. The quantitative acoustic holography based on aperture error correction is studied. The equivalent source and the dynamic wave superposition method are combined with the acoustic holography. The reconstructed holographic data is used to expand the holographic surface size and increase the holographic aperture angle, so that the accuracy of quantitative recognition of acoustic holography can be improved. Research and analysis of similar source model of real sound source near-field evanescent wave components, through the sound source model error to solve the acoustic holography method for quantitative reconstruction of the validation protocol, based on the real physical sound source approximate source model simulated by using a simple sound source, realize the calculation of the real sound source position before any evanescent wave components, physical meaning and finally reveals the reconstruction results of quantitative acoustic holography in the far-field condition, provide the technical basis for the development of noise control and low noise high speed vehicle.
高速车辆等高速运载工具的噪声源是一种多源的复杂噪声源,提高远场声源定量识别精度,掌握其发声和声场传播特性是进一步进行噪声污染防治的重要前提。项目将研究基于孔径误差修正的基尔霍夫衍射声全息车辆声源定量重建方法。通过将基尔霍夫衍射积分从封闭曲面区域推广到有限平面区域,建立全息孔径角与全息重建定量精度的数学关系。研究基于孔径误差修正的定量声全息方法,将等效源和动态波叠加方法与声全息方法结合,通过重构全息数据扩展全息面尺寸,增大全息孔径角,实现声全息定量识别的精度的提高。研究分析真实声源近场倏逝波成分的近似声源模型,通过解决声全息方法定量重建验证方案中的声源模型误差问题,建立运用简单声源对真实物理声源进行模拟的近似声源模型法,实现对真实声源前任意位置倏逝波成分的计算,最终揭示远场条件下声全息定量重建结果的物理意义,为低噪声高速车辆的研制及其噪声防治提供技术基础。
高速车辆等高速运载工具的噪声源是一种多源的复杂噪声源,提高远场声源定量识别精度,掌握其发声和声场传播特性是进一步进行噪声污染防治的重要前提。本项目研究了基于孔径误差修正的基尔霍夫衍射声全息车辆声源定量重建方法,开展了基尔霍夫衍射声全息进行声源定量重建的孔径误差机理研究;将基尔霍夫衍射积分从封闭曲面区域推广到有限平面区域,建立了全息孔径角与全息重建定量精度的数学关系;研究了基于孔径误差修正的定量声全息方法,将等效源和动态波叠加方法与声全息方法结合,通过重构全息数据扩展全息面尺寸,增大全息孔径角,研究了使用少量传声器对运动声源定位的方法,实现了声全息定量识别的精度的提高;研究分析了真实声源近场倏逝波成分的近似声源模型,通过声全息方法定量重建验证方案中的声源模型误差问题,建立了运用简单声源对真实物理声源进行模拟的近似声源模型法,实现了对真实声源前任意位置倏逝波成分的计算。在理论研究的基础上,进行了噪声测量及声源识别实验,为低噪声高速车辆的研制及其噪声防治提供技术基础。项目相关研究共发表论文11篇,其中期刊SCI/EI检索论文5篇,申请发明专利14项,获得专利授权2项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
基于细粒度词表示的命名实体识别研究
基于全模式全聚焦方法的裂纹超声成像定量检测
基于协同表示的图嵌入鉴别分析在人脸识别中的应用
近场声全息重建误差及其关键问题研究
基于统计特征分析的最优声阵列声源探测与重建
非平稳任意外形声源辐射声场的时域近场声全息方法研究
复杂声场环境下任意外形声源的瞬态近场声全息方法研究