The potential micro-vibration in precision mechanical system is characterized by micro-amplitude, broadband excitation and multi degrees of freedom and. The existing vibration control method is difficult to achieve the goal of precisely controlling of micro-vibration. The integrated design method of the intelligent structure based on the array arrangement of piezoelectric devices was developed, the key structure parameters and boundary conditions were both optimized, and the array optimization design method of the piezoelectric devices was also discussed in detail, of which on the basis, the nonlinear dynamic model with mechatronic coupling of the piezoelectric array intelligent structure was built up. The dynamics features of the intelligent structure with piezoelectric array could be summed up after analyzing the influence of the optimization mechanism of piezoelectric array to the dynamic behavior of the piezoelectric intelligent structure. On the other hand, the dynamic hysteresis nonlinearity model of the intelligent structure with piezoelectric array was also given out, and on the basis of combining the characteristics of dynamic hysteresis effect, nonlinear effect, mechatronic coupling effect and dynamic behavior law, the closed loop control model of Feedforward-Fuzzy Adaptive PID was pointed out, and the setting and the optimization of the control parameters were achieved by the fuzzy intelligent algorithm. Finally, the control method with active compensation mechanism could be verified on the experimental platform for micro-vibration of the intelligent structure with piezoelectric array. Aiming at the control of the micro-vibration, this project proposed the integrated design method of intelligent structure with piezoelectric array and the active compensation control method, which improves the precision and stability of precise mechanical system, and it also has important academic significance and engineering application value.
精密机械系统中潜在的微振动具有微振幅、宽频域和多自由度等特点,现有振动控制方法难以实现对微振动的有效控制。提出基于压电器件阵列布局的智能结构集成设计方法,优化其关键结构参数和边界条件,探讨压电器件的阵列优化设计方法,在此基础上构建压电阵列智能结构的力电耦合非线性动力学模型,分析压电阵列优化对压电智能结构动力学行为的影响规律,获取其动力学行为特性。另一方面,建立压电阵列智能结构的动态非线性迟滞模型,综合压电智能结构的动态迟滞效应、非线性特性、力电耦合特性及动力学行为规律等诸多因素,构建前馈-模糊自适应PID闭环控制模型,采用模糊智能算法完成控制参数的优化,提出具有主动补偿机制的控制方法,最后通过压电阵列智能结构微振动实验平台进行验证。本课题面向微振动控制领域,提出压电阵列智能结构集成优化设计方法及主动补偿控制方法,有助于提高精密机械系统的精度和稳定性,具有重要的学术理论意义和工程应用价值。
随着航空航天技术、光学通信技术、超精密加工技术、生物医学技术等高新技术的快速发展,对于高精度、高稳定性的精密机械系统的需求越来越多,而微振动严重制约着精密机械系统的精度和稳定性。本课题以半导体封装为研究对象,针对微振动的微振幅、宽频域和多自由度的特性,研究压电阵列智能结构对微振动的抑制控制,研究压电阵列智能阻尼器的结构设计方法,分析压电阵列阻尼器的力电耦合机理,建立基于压电阵列的力电耦合动力学模型,获取压电阵列智能结构集成设计方法。面向半导体封装工艺过程中存在的微振动,开展了六自由度微振动抑制平台的设计研究,构建了平台的运动学和动力学的模型,仿真并分析平台的运动学和动力学特性。通过对微振动抑制平台的隔振效果进行测试研究,该平台对频率在15Hz以下,振幅2μm左右的微振动具有一定的抑制作用,衰减在18%~64%之间。已经发表SCI、EI检索论文7篇,申报发明专利4件,其中2件已经进入公开实审阶段,出版学术专著1部。综上,研究团队较好地完成了项目提出的研究目标,本课题提出的基于压电阵列智能结构的微振动抑制平台可以有效抑制微振动,促进了我国高端技术装备向高精度、超高精度的飞跃发展,并且打破国外的技术垄断。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
粗颗粒土的静止土压力系数非线性分析与计算方法
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
压电柔性智能结构自适应滤波振动控制方法与实验研究
非线性压电智能复合结构振动主动控制的理论与试验研究
压电智能加筋板结构非线性振动主动容错控制研究
极端状况下的结构振动智能控制方法