传染病控制的多阈值非光滑动力学模型研究

基本信息
批准号:11801013
项目类别:青年科学基金项目
资助金额:25.00
负责人:王爱丽
学科分类:
依托单位:宝鸡文理学院
批准年份:2018
结题年份:2021
起止时间:2019-01-01 - 2021-12-31
项目状态: 已结题
项目参与者:李海侠,孙小丹,高磊,周伟柯
关键词:
阈值策略传染病控制基本再生数全局动力学非光滑动力学模型
结项摘要

Control measures in epidemic control have different effect or are implemented in different ways during different stages of disease outbreak. Such implementation policy dependent on the disease infection induces the non-smooth of the epidemiological models. Almost all the existing non-smooth models are based on the control policy dependent on just one threshold of the system. Indeed, the implementation of control measures or their impact on disease control always depends on two or more thresholds of the system.The purpose of this project is to formulate state-dependent impulsive epidemiological models and Filippov epidemiological models with multiple thresholds. The analytic approaches for non-smooth systems will be developed to investigate the dynamic behavior of the proposed models. In particular, on one hand, we examine the existence of periodic solution and orbital stability of the impulsive models with multiple thresholds; on the other hand, we address the sliding mode dynamics, sliding bifurcation and the stability of multiple attractors related to the multiple switching surface for Filippov models. We are devoted to analyzing the impact of different threshold policy on the disease control, to revealing the difference between the dynamics of non-smooth models with multiple thresholds and that of those with just one threshold, and to exploring the optimal level for each threshold to eradicate the disease or contain the case number to be less than the previously given level. Moreover, with regarding to the transmission and implementation of intervention measures of a particular disease in China, we investigate the optimal control strategy based on the epidemic data. The results obtained provide the theoretical basis for epidemic disease sectors to make decision.

传染病防治中控制措施在疾病发展不同阶段有不同的实施方案或有效性,这种依赖于疫情的实施方案导致实际的传染病动力学模型右端出现非光滑性。现有的非光滑传染病模型大都假设控制措施只依赖于系统的单个阈值,事实上干预措施的实施或有效性常常依赖于系统的两个甚至多个阈值。本项目将建立多阈值状态依赖脉冲微分模型和Filippov模型,发展非光滑系统理论分析方法,研究多阈值脉冲微分模型周期解的存在性和轨道稳定性,分析与Filippov模型多个切换面相关的滑动动力学、滑动分支和多个共存吸引子的稳定性。探明不同阈值水平对抑制疾病传播的作用,揭示多阈值模型与单阈值模型在动力学性态上的区别,探究使疾病消除或感染率(或患病率)不超过给定水平的各阈值的最佳水平。针对特定传染病在我国传播和防治措施实施的具体情况,基于疫情数据研究最优的控制方案,为传染病控制部门提供定量的决策依据。

项目摘要

传染病的控制措施分为药物的(主要包括治疗和接种)和非药物的(主要包括封校、隔离和媒体宣传教育),这些措施在疾病发展的不同阶段有不同的实施方案或有效性,例如媒体报道对接触率的影响依赖于报道的感染人数及感染人数的变化率,何时采用加强的免疫接种/药物治疗策略取决于人群的易感水平/感染人数,医疗资源有限下医院的入院人数由可用病床数决定。由此可见,依赖于疫情发展状况的控制措施在传染病防治中普遍存在,这种控制措施导致实际的传染病动力学模型右端出现非光滑性。本项目建立了三类具有不同阈值控制措施的非光滑传染病动力学模型:状态依赖脉冲微分模型、Filippov模型、连续不光滑模型等,探究了具有阈值控制措施的非光滑动力学模型的建模方法。对状态依赖脉冲微分模型,分析了模型在不同阈值水平下的庞加莱映射的解析性质,研究了模型的周期解的存在性和轨道稳定性,讨论了模型出现混沌现象和发生分岔的条件。对Filippov模型和连续不光滑模型,研究了由多个阈值水平导致的复杂切换面上系统的滑动模式、滑动动力学和滑动分支,分析了伪平衡态、广义平衡态、穿越极限环、鸭型环等多个共存吸引子的存在性和稳定性,讨论了模型的全局动力学,揭示了多阈值水平下系统动力学行为的复杂性。通过建立非光滑传染病模型和光滑的传染病模型,研究了医院病床数、媒体报道、封城、检测方案等在新冠肺炎疫情、艾滋病、以及流感防控防治中的作用。发展了非光滑模型的数值计算方法,估计了模型的基本再生数,评估了阈值水平等关键因素对最终感染人数、达峰时间、传染期等的影响。研究结果表明,对于不同的阈值水平,感染人数最终稳定在一个事先给定的水平、或一个较高的感染水平、或较低的感染水平;媒体报道可明显推迟峰值的到来时间;医院病床数、输入病例数、封城时间等对疫情达峰时间和最终感染人数有显著影响。研究结果可为突发传染病的预防预警提供定量的决策依据。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
2

低轨卫星通信信道分配策略

低轨卫星通信信道分配策略

DOI:10.12068/j.issn.1005-3026.2019.06.009
发表时间:2019
3

内点最大化与冗余点控制的小型无人机遥感图像配准

内点最大化与冗余点控制的小型无人机遥感图像配准

DOI:10.11834/jrs.20209060
发表时间:2020
4

中国参与全球价值链的环境效应分析

中国参与全球价值链的环境效应分析

DOI:10.12062/cpre.20181019
发表时间:2019
5

端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响

端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响

DOI:
发表时间:2020

相似国自然基金

1

基于植物疾病控制的非光滑动力学模型的研究

批准号:11501446
批准年份:2015
负责人:赵婷婷
学科分类:A0604
资助金额:18.00
项目类别:青年科学基金项目
2

基于多阈值策略和随机扰动的传染病模型研究及其应用

批准号:11801528
批准年份:2018
负责人:陈灿
学科分类:A0604
资助金额:25.00
项目类别:青年科学基金项目
3

贵州喀斯特地区非光滑生物动力学模型与控制研究

批准号:11361014
批准年份:2013
负责人:焦建军
学科分类:A0604
资助金额:40.00
项目类别:地区科学基金项目
4

非光滑系统动力学及分岔、混沌控制研究

批准号:11462011
批准年份:2014
负责人:丁旺才
学科分类:A0702
资助金额:58.00
项目类别:地区科学基金项目