Taking graphene oxide as precursor of graphene, cyclodextrin derivates as functional molecules, cyclodextrin-functionalized graphene was prepared by the non-covalent functionalization method. Based on the special structure (a hydrophobic inner cavity and a hydrophilic outer surface) and molecule recognition property of cyclodextrin, the functionalization of graphene with cyclodextrin will make graphene has excellent dispersibility in aqueous solution and molecule recognition ability. Also, based on the characteristics of non-covalent functionalization,the functionalized graphene will retain and show special physicochemical properties (such as high electron transfer rate, large specific surface area and high electrochemical activity) of perfect, two-dimensional and monolayer structure. These are the desirable properties of the excellent sensing material in electrochemical sensors. Additionally, based on the excellent electrocatalytic properties of noble metal nanoparticles (such as platinum nanoparticles), the co-functionalization of graphene with noble metal nanoparticles and cyclodextrin was carried out to further improve the electrocatalytic properties of the cyclodextrin-functioalized graphene.Tkaing the life-related small molecules,environmental pollutants and biomolecules as the targets,the graphene-based electrochemical sensors with excellent properties (such as good selectivity, high sensitivity, fast response and wide response range) were developed. The obtained results will have promising applications in the monitoring of environmental pollutants, forewarning of disease at the beginning and medicine study.
以石墨烯氧化物为前驱物、环糊精衍生物为功能分子,采用非共价功能化方法制备环糊精非共价功能化石墨烯。利用环糊精独特的"内疏水外亲水" 结构特点和分子识别性能,赋予石墨烯在水溶液中优良的分散性能和分子识别能力;基于非共价功能化特点,在充分体现石墨烯独特的单原子层二维平面结构的同时保留其结构的完整性及其所具有的独特的物理化学性质(如高电子输运速度、大比表面积、高电化学活性),以满足电化学传感的需求;此外,基于铂等贵金属纳米颗粒优良的电催化性能,发展贵金属纳米颗粒-环糊精共功能化石墨烯,进一步改善功能化石墨烯的电化学催化性能。以与生命活动相关的小分子、环境污染物和生物分子为研究对象,发展具有高选择性、高灵敏度、响应速度快、测量范围宽等特点的石墨烯基电化学传感器。本项目所开展的石墨烯环糊精非共价功能化及其电化学传感研究,在环境污染物监测、疾病早期预警和药物研究等方面具有广阔的应用前景。
本项目开展了石墨烯氧化物及石墨烯的制备研究,发展了碳纳米管氧化剥离等石墨烯制备方法,优化了相关制备条件和工艺参数,获取了高质量石墨烯氧化物及具有高电化学活性的石墨烯;开展了石墨烯等纳米碳材料的环糊精、3-氨基苯硼酸和贵金属纳米颗粒等功能化研究,改善了石墨烯等纳米碳材料在水溶液等介质中的分散性能、分子设别性能和电化学性能等;基于环糊精空腔内疏水、外亲水特点和优异的分子设别性能,以及石墨烯优异的电子传输性能,开展了基于高性能、功能化石墨烯及其氧化物的电化学传感研究,在环境污染物(1-氨基芘、双酚A等)、DNA甲基化、蛋白质等分析方面发展了一批性能优异的电化学传感平台和双信号电化学传感策略。此外,通过与DNA循环放大策略等相结合,将双信号电化学传感策略拓展到DNA(核酸适配体)基双信号电化学传感平台的设计,应用于DNA、蛋白质和环境污染物等灵敏分析,取得了较好的效果,并进一步发展了三信号电化学分析策略,为高灵敏电化学传感平台设计提供了新思路。本项目所发展的传感材料及双信号电化学传感策略在环境污染物监测、疾病早期预警和药物研究等方面具有广阔的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
粗颗粒土的静止土压力系数非线性分析与计算方法
低轨卫星通信信道分配策略
面向云工作流安全的任务调度方法
金属酞菁共价键功能化石墨烯与光电化学传感器研究
蒽醌及其衍生物非共价功能化还原氧化石墨烯的制备与超电容性能
石墨烯材料的共价修饰和光谱电化学研究
生物分子功能化石墨烯修饰电极电化学传感分析的研究