Elastic thin-walled components robotic drilling system is a multi-dimensional coupling system integrating robot body, drilling spindle and thin-walled component, and its vibration control is one of the most significant issues to realize efficient and stable drilling. In order to suppress the multi-dimensional vibration coupling effect during the elastic thin-walled components drilling, this project conducts a research on multi-dimensional vibration coupling mechanism and active compliant control of elastic thin-walled components robotic drilling system. The multi-dimensional coupling dynamic model of the indicated drilling system is established, and the vibration energy flow characteristic and the vibration transmission mechanism between each subsystem are clarified through the vibration energy flow visualization, which can effectively reveal the multi-dimensional vibration coupling mechanism of the drilling system. Based on the piezoelectric flexure hinge mechanism, a novel compliant connecting device is synthetically designed for the key link of vibration coupling transmission, which can realize the compliant connection between the robot body and the drilling spindle, and suppress the multi-dimensional vibration coupling of the system by constructing a macro-micro active compliant control strategy. The experimental system of robotic drilling is constructed, and the effectiveness of the theoretical model and control strategy is verified through comprehensive performance experiments. The research results are significant for revealing the multi-dimensional vibration coupling mechanism of the robotic drilling system, and can provide the theoretical and experimental basis for its efficient and stable operations and integrated applications.
弹性薄壁件机器人钻削系统是集机器人本体-钻削主轴-弹性薄壁件于一体的多维耦合系统,其振动抑制问题是实现高效稳定钻削亟需解决的重要难题之一。本项目以抑制弹性薄壁件钻削过程系统的振动耦合为目标,开展弹性薄壁件机器人钻削系统多维振动耦合机理及主动柔顺控制研究。建立弹性薄壁件机器人钻削系统的多维耦合动力学模型,通过振动能量流动可视化研究,探明系统的振动能流规律及各子系统间的振动传递机制,以此揭示系统的多维振动耦合机理;针对系统振动耦合传递的关键环节,基于压电驱动柔性铰链机构综合设计一种新型柔顺联接装置,实现机器人本体与钻削主轴的柔顺联接,通过构建宏微两级主动柔顺控制策略,抑制系统的多维振动耦合;搭建机器人钻削作业实验平台,通过综合性能实验验证理论模型和控制策略的有效性。本项目研究对揭示机器人钻削系统的多维振动耦合机理具有重要意义,可为机器人钻削系统的高效稳定作业和集成应用提供理论和实验基础。
弹性薄壁件机器人钻削系统是集机器人本体-钻削主轴-弹性薄壁件于一体的多维耦合系统,揭示系统多维耦合动力学特性并开展振动抑制是实现高效稳定钻削的基础。本项目重点开展了弹性薄壁件机器人钻削多维耦合系统的动力学建模、耦合振动特性分析及自适应控制研究。首先建立了钻削机器人的运动学模型并开展了运动学仿真分析和实验验证,在此基础上,建立弹性薄壁件钻削仿真模型,分析了不同工艺参数下的钻削负载特性规律,构建机器人钻削主轴的机电耦合动力学模型,研究了弹性薄壁件机器人钻削系统存在的机电耦合动力学扰动特性,以及钻削动态负载和主轴转速波动下弹性构件的耦合振动特性,以此揭示系统存在的多维振动耦合现象;设计了钻削主轴柔顺联接装置,基于六自由度串联机器人、钻削装置和弹性构件组成,搭建了弹性构件机器人钻削实验系统,对机器人钻削系统的轴向刚度特性进行了测试分析,分析了弹性构件机器人钻削系统的刚度分析特性;基于模糊自适应PI控制器构建了主轴电机模糊自适应矢量控制系统,探索了弹性构件的自适应振动控制策略。本项目研究揭示了机器人钻削系统存在的多维振动耦合现象,为深入开展机器人钻削系统动力学与控制研究奠定了基础,相关研究成果可为机器人钻削系统的集成、应用和综合性能提升提供理论依据和技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
特斯拉涡轮机运行性能研究综述
基于SSVEP 直接脑控机器人方向和速度研究
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
骨骼超声振动钻削机理研究
薄壁件镜像加工的稳定性预测及基于主动支撑的振动控制研究
复杂薄壁曲面零件铣削过程振动主动控制的理论与方法研究
高长径比微细钻削刀具设计、制造与超声空化振动复合精密钻削研究