Perovskite solar cells (PSCs) have received much more attention due to its excellent light-to-electricity conversion efficiency and low cost. Currently, the stability of the PSCs has already been the bottle-neck to limit its development. In this project, investigation on the stability and related fundamental issues on regulation and control of highly efficient perovskite solar cells will be carried out. Several work will be included on the chemical stabilities and electron transfer processes of perovksite materials under different sensitive conditions, such as the existence of moisture, oxygen, Lewis acid and base, the irradiation of UV light and related wet preparation conditions (i.e. solvent, solute, additive and impurity). In the meantime, the internal relationship and rules will be revealed between the variety of crystal structures and interfacial defects of perovskites and the stabilities of the materials and PSC devices. On the basis of the above work, more concentration will be focused on the regulation and related machanism of the PSCs stability, including researching the interfacial modification and the action mechanisms before and after the perovksite deposition, exploring new perovskite materials and device structures for modifying the stability, developing new sealing techniques with the combination of interfacial modification inner sealing technique, thin film sealing technique outside the electrode and Helmet type sealing technique. Finally, new module integration will be designed and the preparation techniques of PSC modules will be developed.
低成本高效率钙钛矿型太阳能电池(PSCs)是目前国际上的研究热点,但PSCs稳定性问题已经成为制约此类电池发展的瓶颈。本项目直面这一根本问题,拟深入研究敏感环境条件下PSCs的化学稳定性基础问题,其中包括:水氧气氛、紫外光照、酸碱作用、湿法制备、受热或温度变化等敏感环境条件下钙钛矿材料的化学稳定性及其光电转换过程电子转移作用机制等。通过上述研究揭示钙钛矿材料的晶体结构与界面缺陷等变化与材料的稳定性、PSCs化学稳定性之间的内在联系和规律。在此基础上,开展PSCs稳定性调控及其作用机制的研究,将重点研究钙钛矿成膜前后的界面修饰及其调控稳定性的作用机制,探索具有调控稳定性作用的新型钙钛矿材料和器件结构,发展界面修饰内封装+电极外的薄膜封装+PSC器件的盔式封装三道防线复合封装技术和模块设计制备技术等。
我们按照所制定的研究计划展开工作。项目组成员分工协作,围绕着提高钙钛矿电池稳定性研究目标,从钙钛矿电池的关键材料到器件、从对电池电荷动力学过程等基础科学问题的认识和理解到发展新材料、新制备工艺和优化器件结构,开展了系统研究。一方面,制备高质量无机-有机钙钛矿薄膜、设计新型空穴传输材料及其对电池性能的影响,通过界面工程提高载流子输运性能、界面载流子的提取、转移和收集,进而提高电池效率。在此基础上,围绕如何提高电池稳定性,重点发展新的薄膜制备方法、界面调控材料与新工艺;发展了可调控瞬态光电测量系统,研究器件不同工作状态下,不同时间尺度瞬态电荷动力学过程。最后,从晶界调控角度出发,进一步提高电池稳定性,重点是发展基于准二维、三维钙钛矿材料制备高效稳定的钙钛矿电池,并研究晶界离子运动和固化对钙钛矿电池动力学过程的作用机制。.经过项目组全体成员的共同努力,实验室小面积电池效率达到21%以上,在60°C、湿度60%、光照1000小时条件下,效率保持率80%以上。项目执行期间,申请专利6项,授权18项专利;在Energy Environ. Sci., J. Am. Chem. Soc., Adv. Energy Mater., Adv. Funct. Mater., Nano Energy, ASC Appl. Mater. Interfaces, J. Mater. Chem. A, Small, Chem. Commun., Carbon, Appl. Phys. Lett. 等期刊上发表75篇SCI论文;有14名博士研究生和6名硕士生顺利毕业,圆满完成项目预期目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
硬件木马:关键问题研究进展及新动向
低轨卫星通信信道分配策略
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
高效率钙钛矿太阳能电池使役环境下的稳定性机理研究
钙钛矿太阳能电池界面结构调控及其光、热稳定性研究
钙钛矿型太阳能电池稳定性的机理研究及其光伏器件性能提高
高效率、可拉伸的纤维状钙钛矿太阳能电池