Since the current reclaimed water facility is disable to the removal of refractory organic pollutants, the mineral catalyst technology is developed to solve this problem. However, its nature of low efficiency and difficult seperation restrains the application. In this project, to make a recyclable process, the magnetic spinnel MFe2O4 is chosen as the target mineral catalyst. Furthermore, two-dimension (2D) (BiO)2CO3 is introduced to MFe2O4 to form a MFe2O4/2D (BiO)2CO3 nano composite, which will provide a new reactive oxygen species (ROS) namely hydroxyl radical. The hydroxyl radical is a powerful ROS to mineralize refractory organic pollutants. In addition, the 2D (BiO)2CO3 can be well dispersed in the aqueous solution, which improves the contact between catalyst and pollutants, as well as catalytic performance. As a result, the MFe2O4/2D (BiO)2CO3 nano composite is capable for degrading refractory organic pollutants in reclaimed water. To evaluate the performance in different water quality, the removal efficiency and ROS reaction mechanism are investigated at different environmental parameters, such as temperature, pH, ions and co-exist pollutants. Moreover, the degradation mechanism and reaction pathway of refractory organic pollutants are studied as well as the detoxicity mechanism. This project provides a new strategy for the reclaimed water. It also gives suggestion on the practicability and safety of the MFe2O4/2D (BiO)2CO3 photocatalysis process.
针对现有再生水处理工艺中无法有效去除顽固型有机物,以及新型纳米矿物催化技术在反应中存在效率低、难回收等问题的现状,提出开发可磁性回收的尖晶石纳米MFe2O4为基础的MFe2O4/二维(BiO)2CO3复合纳米矿物催化材料,探索该复合材料的可控合成方法。通过能级调控提供羟基自由基,利用二维(BiO)2CO3良好的水相分散性增加固液反应接触面积,提高顽固型有机物降解效率。考察水环境因素对该复合纳米矿物材料的催化性能和降解机理的影响,评价其在不同水质中的运行效能,阐明关键水环境因素影响活性物种的机制。解析典型顽固型有机物在MFe2O4/二维(BiO)2CO3体系中降解的中间产物,构建多参数的反应动力学模型,实现体系中目标污染物和副产物的同步预测,结合反应前后水质的生物毒性,阐明体系的脱毒机制。研究结果为再生水中顽固型有机物提供一种深度处理技术,并对该技术的可行性和安全性提供科学数据支撑。
针对现有再生水处理工艺中无法有效去除顽固型有机物,以及新型纳米矿物催化技术在反应中存在效率低、难回收等问题的现状,提出开发可磁性回收的尖晶石MFe2O4和高效率的Bi系为基础的复合纳米矿物催化材料,探索该复合材料的可控合成方法。利用二维纳米材料良好的水相分散性增加固液反应接触面积,将磁性MFe2O4和二维纳米材料复合,提高顽固型有机物降解效率同时提供磁性可回收性能。构建Bi系纳米材料复合物,利用金属Bi的表面等离子体共振效应,促进O2活化生成•O2-和•OH自由基,提升催化效率。考察水环境因素对该复合纳米矿物材料的催化性能和降解机理的影响,评价其在不同水质中的运行效能,阐明关键水环境因素影响活性物种的机制。解析典型顽固型有机物在MFe2O4/二维纳米材料体系、Bi系材料的催化下降解的中间产物,构建多参数的反应动力学模型,实现体系中目标污染物和副产物的同步预测,结合反应前后水质的生物毒性,阐明体系的脱毒机制。研究结果为再生水中顽固型有机物提供一种深度处理技术,并对该技术的可行性和安全性提供科学数据支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
农超对接模式中利益分配问题研究
低轨卫星通信信道分配策略
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
可再生的纳米碳基复合材料吸附降解水中PPCPs的研究
难降解有机物吸附-光降解树脂材料制备机理及应用研究
基于MFe2O4尖晶石型磁性纳米材料的生物传感器研究
刺绣型碳纳米管-二维材料复合薄膜的制备与性能研究