Aromatic wastewater is characterized as being hazardous and difficult to degrade. Thus, it is necessary to develop an efficient, green, and low-energy-consuming method that can be used to treat aromatic wastewater thoroughly. The applicant proposed an innovative technique that combines the application of predominant bacteria and conductive polymercomposites EMBR based on the bioreactor’s effectiveness in both pollutant treatment and membrane-fouling control. This technique can be applied to treat wastewater through multiple synergizing mechanisms of biodegradation, electrocatalysis, and membrane separation coupling by the combined application of predominant bacteria-conductive polymercomposites EMBR process. The main areas of research include the following: (1) preparation of predominant bacteria using a purification and culture technique coupled with high-throughput sequencing technology; (2) preparation and characterization of a composite conductive membrane, investigation of how effectively membrane fouling is alleviated, and the electrocatalytic effect of the membrane; and (3) establishing a new technology that combines the application of predominant bacteria-conductive polymercomposites EMBR process, and developing a corresponding regulation and control strategy. In addition, the mechanism underlying the improvement of aromatic wastewater treatment will be clarified. Moreover, the pollutant removal efficiency and the mechanism underlying the response to membrane fouling of the microbial communities will be investigated at both the macro and micro levels. The aim of this study is to provide evidence and a technical basis for the in-depth analysis of aromatic wastewater treatment technologies, and accelerate the advancement of aromatic wastewater treatment research.
芳烃废水兼具“有毒有害”和“难降解”两大特性,探寻高效、绿色、低能耗的新型处理工艺是芳烃废水深度处理的必然选择。申请者创新性的提出将优势菌强化与复合导电膜EMBR有机结合,从提升污染物处理效果和控制膜污染双重角度出发构建优势菌-复合导电膜EMBR组合工艺,发展基于生物降解、电催化和膜分离耦合协同废水处理的新方法。主要内容包括:(1) 采用纯培养技术结合高通量测序技术制备优势菌剂;(2) 复合导电膜制备与表征,及其电催化和减缓膜污染特性研究;(3) 构建优势菌-复合导电膜EMBR组合工艺,确定工艺调控策略,探明其强化芳烃废水处理效能的作用机制,同时,从宏观和微观两个层面揭示微生物群落与污染物去除效率及膜污染之间的响应机制。本研究旨为芳烃废水处理工艺的深入研究提供参考依据和技术基础,加速芳烃废水深度处理的研究历程。
芳烃废水兼具“有毒有害”和“难降解”两大特性,探寻高效、绿色、低能耗的新型处理工艺是芳烃废水深度处理的必然选择。本研究将优势菌强化与复合导电膜EMBR有机结合,从提升污染物处理效果和控制膜污染双重角度出发构建优势菌-复合导电膜EMBR组合工艺,发展基于生物降解、电催化和膜分离耦合协同废水处理的新方法。从焦化废水厂活性污泥中分离得到两株高效苯酚降解菌Pseudomonas sp. JXY和Comamonas sp. SSN,菌株JXY和SSN均具有较强的底物广谱性,利用响应曲面法优化高效降解菌的配比构建优势菌剂,并解析其代谢焦化废水的主要污染物的代谢途径为在苯酚羟化酶作用下在进行羟化,随后经外二醇双加氧酶进行间位断裂,最终进入TCA循环。制备并表征氧化石墨烯/聚吡咯改性复合导电膜,其减缓膜污染机制为静电斥力与阴极原位产生过氧化氢的共同作用,电催化体系中污染物的降解机制主要是•OH自由基的氧化作用。在此基础上建立优势菌-复合导电膜EMBR组合工艺,确定工艺调控策略为反应液pH 6.26~8.18、温度 26~38oC、优势菌投加量 2.5~5%、苯酚浓度200~450 mg/L和电压2 V/cm。短期和长期运行均表明组合工艺具有较高的芳烃废水的处理效率,并有效减缓膜污染。脱氢酶、ATP含量和关键降解酶活性分析表明施加适当电场可提高活性污泥的代谢活性,Illumina高通量测序解析表明优势菌JXY和SSN为组合工艺的优势种群,施加电场可促进优势菌属的生长,揭示优势菌强化与复合导电膜EMBR电催化间存在耦合协同效应。EPS含量、EEM- PARAFAC和FITR分析EPS成分表明施加适当的电场可降低EPS含量并导致其成分变化。此外,Illumina高通量测序表明施加适当的电场可使膜污染物样品的微生物群落丰富度和多样性降低,改变微生物的群落动态。以上研究表明,优势菌-复合导电膜EMBR组合工艺在芳烃废水的处理和膜污染减缓方面具有明显优势,为芳烃废水的深度处理和膜污染减缓方面的研究提供技术支持和数据基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于Pickering 乳液的分子印迹技术
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
微电场、导电膜EMBR水污染及膜污染控制化学基础
MAP-MBR组合工艺对海水养殖废水处理及膜污染机制研究
光催化氧化-生物氧化组合工艺处理染料废水研究
耐盐复合菌系-SMFMBR处理印染废水及其机制研究