Magnetic storage mediums with high density and high processing speed based on domain-wall dynamics in thin magnetic nanowires have been a research hotspot in recent years. The external driving force that pushes domain walls moving along wire axis can be static magnetic fields, time-dependent magnetic fields or spin-polorized electrical currents. Due to the transverse magnetic anisotropy in thin magnetic nanowires, there exists an axial critial magnetic field magnitude or current density. When the driving force is smaller than it, domain walls will propagate along the wire axis like a rigid body (rigid-body mode). When the driving force is greater than that, the domain wall angular plane will rotate around the wire axis, meanwhile the domain wall itself runs along the wire following a back and forth manner (rotary reciprocation mode). Generally, the average velocity in the latter case is lower than that in the former case, however, the peak velocity could be greatly higher. In view of this, the ideal way of realizing the ultra high speed axial domain wall motion in thin magnetic nanowires is to suppress or even eliminate the "rotary reciprocation mode" under high axial driving force and maintain the domain walls in the "rigid-body mode" with a velocity that is around the peak value in the rotating case. In this proposal, based on different possible mechanisims of pinning effect of domain wall planes in angular direction of thin magnetic nanowires, we propose various schemes to suppress or even eliminate the rotary reciprocation mode of the domain walls and keep them in the rigid-body mode, therefore realize their ultra high speed motion in axial direction which will highly improve the data-processing rate of nano-devices based on domain wall dynamics in thin magnetic nanowires. The main content of this reserch is to search for theoretical limits of these realization methods, which will provide theoretical basis and inspirations for development of novel magnetic nano-devices.
基于细磁性纳米线中磁畴壁动力学的高密度、高速度磁存储介质是近年来的研究热点。目前已知,静磁场、含时磁场或自旋极化的电流都可以驱动磁畴壁沿纳米线轴向运动。细纳米线中横向磁各向异性的存在使得存在一个轴向临界磁场或电流密度:驱动小于此值时,磁畴壁将类刚体地平动;大于此值时,磁畴壁将旋转往复地漂移运动。一般地,后者的平均速度小于前者,尽管瞬时速度峰值可能远高于前者。 当外加驱动高于临界值时,精细操控磁畴壁的运动以压制甚至消除其旋转往复形式,使之尽量保持在峰值速度以类刚体模式前进,是实现磁畴壁超高速轴向运动的理想途径。在本申请中,基于磁畴壁在细纳米线中被角向钉扎的各种可能机制,申请人提出了多种方案以压制或消除磁畴壁面的角向转动从而实现磁畴壁的超高速轴向运动,进而大幅提高器件的处理速度。探索各种实现方案的理论极限,为新型磁性纳米器件的研发提供理论依据,是本课题的主要研究内容和目标。
项目背景和研究内容:. 承载着横向磁畴壁(TDW)的细磁性纳米线是未来的纳米“赛道存储器”的基本构成单元,而TDW的轴向运动速度直接决定着器件的响应速度。驱动TDW运动的各种机制及所导致的TDW迁移率目前已比较清楚,而寻找进一步加速的可能性则成为理论探索和实际应用上的迫切需求。事实上,有多种方式可进一步加速TDW。其中,施加横向磁场(TMF)在数值模拟和实验测量中最为常见,同时也是其他方式的基础,然而缺乏理论指导。在本项目中,我们系统研究了多种驱动因素下,在细磁性纳米线中实现磁畴壁的超高速轴向运动进而大幅提高器件处理速度的机制,探索了其理论极限,为新型磁性纳米器件的研发提供了理论依据。.主要结果:. 首先是静态情形。在均匀TMF下,原本处于easy-面内的TDW将被拉离,并在其中心区域附近被扭曲。一般来说,严格的TDW解析构型难以求解。通过一些近似,我们得到了一个连续可微的、极角和方位角完全解耦的近似解。此解非常接近于数值模拟结果,且是动力学工作的基础。. 接着我们应用渐进展开方法,系统研究了TMF下的TDW动力学。解析结果显示:在磁场驱动和电流驱动情况下,TMF可对TDW显著加速。. 在轴向磁场驱动情况下,均匀TMF在允许的幅度范围内将极大加速TDW的轴向运动。解析结果与数值模拟结果高度吻合。另一方面,为消除均匀TMF所引起的TDW中心区域的扭曲,我们固定TMF的幅度,而允许其指向可变。最终,我们得到了给定TDW倾斜姿态下,为实现它的TMF构型;且此时TDW仍被轴向场加速。. 在电流驱动情形下,我们关注均匀TMF,并主要集中讨论以下三种常见构型:(1)电流沿单层磁性纳米线轴向传播,(2)电流垂直通过三层结构的自旋阀,(3)电流沿双层(单层磁性+重金属非磁性衬底)纳米线轴向传播。解析结果给出:只要磁矩所受力矩不含有磁矩空间梯度分量,TMF即可加速TDW运动。我们给出了三种情况下的加速因子,并建立了电流驱动下TDW运动的路线图以解释解析结果。. 最后,我们也进行了安德森转变的一些研究,采用的方法是构建新的包含自旋的随机网格模型,以模拟处于随机势场中的带自旋电子,从而探索二维和三维拓扑绝缘体中的量子相变。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于细粒度词表示的命名实体识别研究
基于图卷积网络的归纳式微博谣言检测新方法
地震作用下岩羊村滑坡稳定性与失稳机制研究
磁场驱动磁性纳米线中畴壁运动的研究
磁性纳米金属薄膜中磁畴壁的运动
超短磁脉冲对软磁纳米线畴壁运动调控的研究
基于微观格点模型研究铁磁纳米线中的畴壁运动现象