In this project, we propose a novel way to perform the real-time measurement, collaborative regulation control and reinforcement for the processes of energy/mass transfer and transformation in the intimate coupling of photocatalysis and biodegradation (ICPB) reactor based on the new fiber technologies. The aim of the project is to overcome the bottleneck problems of measurement, regulation control and reinforcement of the energy/mass transfer and transformation in the ICPB reactor. The bottleneck problems are from the wastewater treatment and resource conversion employing the ICPB technology. In order to achieve the goal, the following works will be carried out. 1) To obtain the high efficiency photoelectric/photothermal conversion and photothermal radiation visible-light-driven photocatalytic optical fiber, first, we will investigate the principles and methods of the photoelectric/photothermal conversion and the photothermal radiation reinforcement; subsequently, we will explore the relationship between the photoelectric/photothermal conversion and photothermal radiation at fiber surface and internal light transmission of optical fiber. 2) We will study the principles and methods of real-time measurement, regulation control and reinforcement for the energy/mass transfer and conversion in the ICPB reactor. 3) We will explore the mechanism and rules of energy/mass transfer and conversion in the photocatalytic and biofilm areas, we will also reveal the coupling relationship between the photocatalysis and biofilm areas and their with the ICPB reactor in the processes of the energy/mass transfer and conversion. 4) We will establish the real-time measurement and control integration system for the ICPB reactor using the proposed fiber-optic on-line measurement systems and regulation control systems. 5) We will obtain the coordinated regulation control principles and methods for the processes of the energy/mass transfer and conversion in the ICPB reactor. According to the above studies, we can realize the real-time measurement, regulation control and reinforcement for the energy/mass transfer and conversion in the ICPB reactor, and the organic wastewater degradation and resource conversion of the ICPB reactor can be enhanced. Furthermore, the research results will promote the development of the engineering thermophysics and related interdisciplinary.
项目以光催化与生物降解耦合技术实现有毒有机废水治理及其资源转化为研究背景,针对光催化与生物降解直接耦合反应器内能质传递及转化过程测控与强化研究中存在的瓶颈问题,提出基于新型光纤技术实现反应器内能质传递及转化过程实时测量、协同调控与强化的思想。研究光电光热转换及光热辐射强化原理与方法,探明光纤表面光电光热转换及光热辐射与内部光传递的相互关系,获得高效光电光热转换及光热辐射可见光催化光纤;在此基础上研究光催化与生物降解直接耦合反应器内实时测控及强化原理与方法,探明光催化与生物膜区域内能质传递及转化机理与规律,揭示区域间及其与反应器整体之间的能质传递及转化相互耦合关系,构建光催化与生物降解直接耦合反应器内实时测控系统,获得反应器内能质传递及转化过程协同调控原理与方法,实现反应器内能质传递及转化过程实时测控与强化,提高反应器降解有机废水及其资源转换能力,促进工程热物理及相关交叉学科发展。
项目以光催化与生物降解耦合技术实现有毒有机废水治理及其资源转化为研究背景,针对光催化与生物降解直接耦合反应器内能质传递及转化过程测控与强化研究中存在的瓶颈问题,提出基于新型光纤技术实现反应器内能质传递及转化过程实时测量、协同调控与强化的思想。研究光电光热转换及光热辐射强化原理与方法,探明光纤表面光电光热转换及光热辐射与内部光传递的相互关系,获得高效光电光热转换及光热辐射可见光催化光纤;在此基础上研究光催化与生物降解直接耦合反应器内实时测控及强化原理与方法,探明光催化与生物膜区域内能质传递及转化机理与规律,揭示区域间及其与反应器整体之间的能质传递及转化相互耦合关系,构建光催化与生物降解直接耦合反应器内实时测控系统,获得反应器内能质传递及转化过程协同调控原理与方法,实现反应器内能质传递及转化过程实时测控与强化,提高反应器降解有机废水及其资源转换能力。通过本项目研究工作的开展,实现了高效酚类有毒有机污染物的快速降解及微藻生物质能源转化,本项目构建的光催化与生物降解直接耦合反应器内实时测控系统6h可将体积约为50mL,浓度分别为100mg/L苯酚、50mg/L氯酚、50mg/L氟酚的混合物完全快速地降解并实现微藻生物质能源转化,微藻生物量达到~70g/m2、油脂含量达到~39%。课题组完成了项目各项任务及考核指标,在国内外发表学术论文35篇:SCI论文27篇(中科院大类一区21篇、二区6篇,ESI高被引论文3篇、封面论文1篇,SCI第一标注17篇、第二标注7篇、第三标注2篇、第四标注1篇),EI论文5篇(EI第一标注4篇、第二标注1篇),核心期刊3篇(EI第一标注2篇、第三标注1篇);获得授权发明专利3件,申请(公布)发明专利6件;培养研究生8名、培养省部级人才2名,入选2022年度全球前2%顶尖科学家榜单1名;参加国内外相关学术会议13次(大会报告6次);获中国发明协会发明创业创新奖一等奖1项。课题取得了较好的研究成果,在国内外产生了一定学术影响;促进了工程热物理学科中能质传递理论与调控技术、智能感知与智能仪器技术的发展,同时也推进了光催化、废水处理、生物膜、光催化等反应器技术的应用和发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
黄河流域水资源利用时空演变特征及驱动要素
硬件木马:关键问题研究进展及新动向
面向云工作流安全的任务调度方法
TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用
自恢复碱性吸收剂式高效固碳光生物反应器内能质传输与生化转化特性及强化
光致发热光纤表面生物膜光生化转化过程实时测控及强化研究
多相光生化转化过程中的界面行为及能质传递强化
双面液膜热质耦合传递吸收过程的强化研究