Based on the previous work related to preparing optoelectronic hetero-interface via co-assembly, a new strategy leading to high performance porous interface materials and optoelectronic devices for the detection of reactive oxygen species (ROS) is proposed by the applicant, in which the nanomaterials were directly embedded into ordered mesoporous frameworks. This strategy can greatly reduce the size effect of the external materials on the precursor in the process of the co-assembly and can be applied to the detection of reactive oxygen species, which provides broad theoretical demonstration and application prospect for preparation of the heterogeneous optoelectronic sensing interface via the co-assembly method. The innovation of this study is mainly reflected in the following three aspects: (1) The contact area between the two can be increased by introducing a two-dimensional cellular materials with high specific surface area. Consequently, the detection sensitivity of ROS in a single cell can be improved; (2) The nano quantum dots with excellent photoelectric properties are embedded in the framework of ordered porous materials, which can not only realize the photoelectric detection of ROS in single cells, but also improve the detection sensitivity; (3) The interaction of porous skeleton and living cells can be enhanced via in situ culturing of cells on the two-dimensional porous skeleton with high specific surface area, which gives riso to high in-situ detection sensitivity of ROS in living cells.
本项目基于申请人前期提出的超组装光电子异质界面方法,设想原位地将纳米材料直接自嵌入到有序介孔框架中,进而发展与制备面向活性氧检测的高性能多孔界面材料与光电子器件的新方法,该策略能够极大地降低超组装过程中引入外源材料产生的尺寸效应对前驱体的影响,并应用于活性氧的检测,同时制备超组装异质光电子传感界面具有广阔的理论示范和应用前景。创新之处主要体现在以下三点:1. 通过引入高比表面的二维多孔材料,可以增大两者之间的接触面积,从而提高单细胞中活性氧检测的灵敏度;2. 将具有优异光电性质的纳米量子点嵌入有序多孔材料的骨架中,不仅能够实现单细胞中活性氧的光电检测,还能够进一步提高检测的灵敏度;3. 在具有高比表面的二维多孔骨架上原位培养细胞,使得多孔骨架与活细胞的相互作用得以增强,对于提高活细胞中活性氧的原位检测灵敏度具有重要帮助。
疾病的早期诊断对于重大疾病的治疗具有重要价值,这一目标有望通过单细胞分析实现。而活性氧(Reactive oxygen species,ROS)是细胞在进行有氧代谢过程中所产生的一类非常不稳定的含氧化合物,氧化还原平衡失调时活性氧増多会导致细胞损伤,并进而引起机体病变。因此,探索一种灵敏、高效、便捷、准确的方法进行单细胞内活性氧的检测对于理解细胞内活性氧的生物学作用以及揭示其内在分子机制具有重要意义。同时,活性氧的含量与细胞癌变与否密切相关。细胞内活性氧含量变化引起的微环境变化检测对药物载体系统也有着重大指导意义。.基于以上背景,项目将功能材料通过超组装法嵌入有序骨架中,制备具有高有序性、高灵敏度的介孔超组装框架材料(SAFs);构筑基于仿生有序异质界面,探索合成条件对SAFs基复合材料的形貌、结构等性质的影响,建立基于纳米材料与功能分子设计界面的活性氧检测新方法;进一步总结材料领域及检测领域的文献,为后续研究提供思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
短肽共组装功能化平台构建用于乳腺癌细胞三维培养及活性氧/氮物种实时监测
微电极阵列上功能化传感界面构建及用于单细胞实时监测研究
多重可逆共价法构建动态生物界面及其用于调控细胞行为的研究
二维异质结中界面电荷超快输运过程的扫描成像