Carbon capture and storage, which is considered as one of key technologies to mitigate the global climate change and to control the mission of greenhouse gas, is limited in scale-up development due to the intensive energy consumption of carbon capture. An urgent research demand on the energy conversion mechanism is emerging in this field, which calling an in-depth understanding on the conversion relationship among various forms of involved energy, also on a clarified quantitative calculation method, to explore new rule and pathway of energy-saving and consumption-reducing. .Taking the classical concept-heat pump from thermodynamics as analogy object, thermodynamic carbon pump (TCP) was proposed conceptually in this project, with its polished definitions in literal, mathematical and graphic. The modeling on TCP is also conducted with developed calculation methods on energy efficiency, for an analysis on conversion relationship among heat, work and chemical energy. Then, a theoretical analysis on TCP cycle is conducted with cycle methodology. In addition, an experimental research on TCP cycle driven by heat/work is conducted as well. Through the verification between theoretical and experimental researches, the general mechanism from TCP cycle could be revealed. Furthermore, typical entropy increase processes in TCP cycle are explored with developed calculation method on irreversibility in cycle. Based on the regulatory mechanism among various entropy increases, improvement method of cycle energy-efficiency and relevant technological measures could be obtained, to form a quantitative guideline of energy-saving and consumption-reducing for carbon capture..Through thermodynamic method, the carbon capture technology could be interpreted in this project from a general perspective of energy conversion. In addition, the mechanism of energy-saving and consumption-reducing in carbon capture is further explored from a perfective of entropy increases. Such works would effectively guide the engineering practices in carbon capture field.
碳捕集与封存技术被认为是应对全球气候变化、控制温室气体排放的关键技术之一,然而捕集能耗过高限制了规模化发展,迫切需要从机理层面深入认识碳捕集过程中不同能量形式之间的转换关系,明确量化计算方法,探索节能降耗的新机制与新途径。.本项目借鉴热力学经典概念热泵,提出热力学碳泵概念,完善文字、数学和图形定义,构建模型并发展能效计算方法,考察碳捕集过程中“热-功-化学能”三者转化关系;其后,开展热力学碳泵循环的理论构建和分析,搭建热/功驱动热力学碳泵循环实验系统,通过理论和实验对比,考察碳泵循环中能量转换的共性规律;最后,探索碳泵循环中典型熵增过程,发展面向循环中不可逆性的计算方法,基于熵增调控机制获得效率提升方法和技术举措,形成量化的循环优化导则。.本研究通过热力学方法,对碳捕集中的能量转换机制进行统一性诠释,并从熵增角度对碳捕集技术节能降耗的机制进行更进一步的探索,可有效指导工程实践。
作为一种战略性保障技术,碳捕集、利用与封存技术对应对全球气候变化、实现我国“3060双碳”目标有着重要的战略意义,同时其也被中共中央、国务院《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》和教育部《高等学校碳中和科技创新行动计划》列为重点关注。目前,碳捕集技术面临的主要挑战在于运行能耗过高,制约了该技术在全球的规模化发展,同时,由于基础理论“缺位”,致使技术逐级放大过程中“跳跃性强”、“连贯性差”且性能报道数据驳杂、甚至彼此矛盾,迫切需要围绕其能量转换基本原理展开探索,从而获得其节能降耗的新机制与新方法。.执行期间,项目团队依循项目任务书的研究方案和技术路线,根据年度研究计划时间表和预算展开工作,围绕“热力学碳泵”这一原创性核心概念,先后展开了热力学碳泵基础理论研究、热力学碳泵循环基础理论研究、热力学碳泵循环能效实验研究和热力学碳泵循环熵增基础理论研究,在热机学、热熵学和热统学三角度系统地阐述了吸附碳捕集过程中的熵增机制,有效服务了吸附碳捕集技术节能降耗新机制和新方法的探索,在碳捕集领域研究创新、人才培养、地区和国际合作交流等方面取得了系列成果,顺利完成了研究任务并达到了任务指标。.执行期内,共发表第一标注中英文论文21篇,其中SCI索引14篇,第二标注中英文论文16篇,其中SCI索引13篇;项目期内申请中国发明专利6项,其中获得授权1项、转国际专利(PCT)1项。培养博士研究生3人、硕士研究生6人,中方派出国际交流4人次(短期三个月2人次、一年期2人次),累计30人月,与外方联合召开线上研讨会4次。2019年获得国内行业协会二等奖两项(排名3和排名1)。.综上,本项目创新性地提出了与“热泵”具有比拟关系的“碳泵”热力学概念,将热力学逆循环研究从传统热功转换领域拓展至“热-功-吉布斯自由能变”广义热化学循环领域,填补了国内外热力学循环研究在碳捕集领域应用的空白。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
中国参与全球价值链的环境效应分析
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
基于MODIS-NDVI数据的植被碳汇空间格局研究——以石羊河流域为例
太阳能热化学吸附碳泵循环基础问题研究
叶片泵内气液两相流型基础问题研究
碳点对蛋白纤维化调控作用及其机制热力学基础
高压高速柱塞液压泵热力学机理及温度特性研究