The present proposal is focused on the synthesis of ultra-fine powders with small particle size, narrow size distribution and different particle shapes, which can be modified by adjusting the acid and alkaline solutions, ratio of cation to anion , pH values, surface active agents, solution temperatures, hydrothermal temperatures and incubation time, heating temperatures etc., of scheelite (A0.5xBi1-0.5x)(MoxV1-x)O4 (A=Li+, Na+, K+) systems via the co-precipitation method, hydrothermal method and other wet-chemical methods using the Bi(NO3)3o5H2O, LiNO3, NaNO3, KNO3, NH4VO3 and (NH4)6Mo7O24o4H2O as starting materials. A series of low temperature firing (<800 ℃) ceramics with high microwave dielectric performance (εr>75, Q×f>12,000 GHz) are expected to be obtained by careful sintering processes with appropriate heat rate, sintering temperature, incubation time and cooling rate. The relation between processing parameters, powder characteristic, phase evolution and dielectric properties of ceramics will be studied. In situ XRD and Raman analysis will be employed to investigate the phase transition mechanism from monoclinic scheelite structure to tetragonal scheelite structure. The intrinsic microwave dielectric properties will be extrapolated from the fitting values from far-infrared spectra and used to help understand the structure-property-relation. All the results will contribute to the exploration for new generation microwave dielectrics and devices for low temperature co-fired ceramic (LTCC) technology application.
本项目旨在以硝酸铋、硝酸锂、硝酸钠、硝酸钾、钒酸氨及钼酸铵为原材料,采用共沉淀和水热反应法,通过调节酸碱性溶液、阳离子阴离子配比、pH值、表面活性剂、水热反应温度及时间、热处理温度等实验参数,制备高纯相、粒径小且分布均匀的白钨矿(A0.5xBi1-0.5x)(MoxV1-x)O4(A=Li+、Na+或K+)体系粉末样品;在较低烧结温度下(<800℃)得到一系列高性能(εr>75、Q×f>12,000 GHz)的致密陶瓷样品。通过调节湿化学法工艺参数,研究白钨矿成相机理,颗粒生长规律及微观形貌影响因素;通过调节烧结工艺,研究粉体特性、晶粒尺寸与微波介电性能的关系;通过原位XRD及Raman方法研究白钨矿单斜到四方结构铁弹相变机理;通过红外谱拟合法研究本征微波介电性能,为进一步理解微波材料结构与性能的关系、开发新型低温烧结高介电常数、高品质因数的温度稳定型微波介质材料提供指导。
微波介质陶瓷是指应用于微波频段(300MHz~300GHz)电路中作为介质材料实现一定功能的陶瓷,广泛应用于微波通信、卫星通信、移动通信和无线网络等设备中。随着微波器件向集成化、小型化方向发展,低温共烧陶瓷(Low Temperature Co-fired Ceramics)技术以其优异的电学、机械、热学及工艺特性,已经成为微波通讯器件模块化的主要技术之一。本项目从基础二元相图出发,以低共熔点单相化合物为研究基础,根据晶体化学相关理论,在Bi2O3-MoO3、Li2O-MoO3二元体系、Li2O-ZnO-MoO3、Li2O-Bi2O3-MoO3三元体系、Li2O-Bi2O3-MoO3-V2O5、Na2O-Bi2O3-MoO3-V2O5、Fe2O3-Bi2O3-MoO3-V2O5四元体系及其它富铋、钼、锂、钠、钾的多元体系中,研发出涵盖低k(介电常数<20)、中k(介电常数20~45)及高k(介电常数>45)的一系列新型超低温烧结(烧结温度<660℃)微波介质陶瓷材料,其烧结温度远远低于常规意义的低温烧结微波介质陶瓷(如表I所示,其中NaAgMoO4可以在400℃下致密成瓷),且部分材料可以与低熔点的贱金属Al共烧匹配,开拓了Al电极在LTCC技术中的应用,并论证了Al电极取代Ag电极的可能性。该系列创新性研究成果在国际著名期刊美陶、欧陶、Scientific Reports上发表(D. Zhou et al. Sci. Rep. 2014, 4:5980; 2014, 97[5], 1375; 2014, 97[6], 1819),此系列研究成果已被国内外学者引用100余次,引起了介质陶瓷领域工作者的广泛关注,引发了一系列寻找制备本征低烧微波介质陶瓷材料的研究工作;并且多次在相关国际会议中以口头报告形式向国际同行展示,如7th Asian Meeting on Electroceramics(AMEC-7、Penang、Malaysia)等。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
感应不均匀介质的琼斯矩阵
高压工况对天然气滤芯性能影响的实验研究
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
极地微藻对极端环境的适应机制研究进展
微波介电陶瓷材料介电损失机理及其改善的研究
岩盐结构陶瓷微波介电性能的研究
Li离子填隙对A4B3O12型陶瓷的结构与微波介电性能调控研究
石榴石结构铝酸盐陶瓷的微波介电性能调控研究