In recent years, with the rapid development of the world's aviation industry, accidents have occurred frequently during the stage of aircraft approaching, which have seriously affected the safety of people's lives and property. Aeronautical Ad hoc NETwork (AANET) utilizes data links between airplanes in the network to realize the information sharing of the security situation and it represents the development trend of the new networked navigation system. However, due to the high speed of the aircraft, the variety of the flight direction and the complex channel environment, the communication path between the source node and the destination node in the AANET will be broken. Community model is widely introduced into social networks, which is based on a close relationship to different users in a community to create a new more open social relations, so as to better achieve information sharing. To this end, we take advantage of the social aggregation characteristics of the nodes in the AANET to conduct research on effective distributed community mining, the most active node selection within a community, information sharing decision in a community and information recommendation between communities. Related dependable methods will be proposed to accelerate the information sharing in the AANET, which is important to improve the emergency response and safety of aviation system.
近年来,随着世界航空业的蓬勃发展,飞机进近事故时有发生,严重影响人们的生命和财产安全。航空自组网通过引入独有的机间数据链来实现机间安全态势信息共享,符合新航行系统网络化的发展趋势。然而,由于飞机的高速度、飞行方向多变及其所处的复杂信道环境,使得进近条件下航空自组网中源节点和目的节点之间的通信路径将频繁断裂,严重影响网络安全态势共享的能力。社群模式被广泛引入社交网络中,其出发点是基于某种紧密关系将不同用户组合在一个社区中以创建一种新的更开放的社交关系,从而更好地实现信息共享。为此,本项目利用进近条件下航空自组网中节点具有的社交聚集特性,围绕进近条件下航空自组网中高效的社群分布式挖掘、社群内活跃节点选择、群内信息共享决策以及群间信息推荐四个子课题开展研究并提出相应方法,研究能够加速突破间歇连通的航空自组网中信息可靠共享的难题,对于提高航行系统的应急响应和安全保障能力具有重要理论意义和实用价值。
近年来,随着世界航空业的蓬勃发展,飞机进近事故时有发生,严重影响人们的生命和财产安全。航空自组网通过引入独有的机间数据链来实现机间安全态势信息共享,符合新航行系统网络化的发展趋势。然而,由于飞机的高速度、飞行方向多变及其所处的复杂信道环境,使得进近条件下航空自组网中源节点和目的节点之间的通信路径将频繁断裂,严重影响网络安全态势共享的能力。社群模式被广泛引入社交网络中,其出发点是基于某种紧密关系将不同用户组合在一个社区中以创建一种新的更开放的社交关系,从而更好地实现信息共享。为此,本项目利用进近条件下航空自组网中节点具有的社交聚集特性,围绕进近条件下航空自组网中高效的社群分布式挖掘、社群内活跃节点选择、群内信息共享决策以及群间信息推荐四个子课题开展研究并提出了相应方法,实验结果表明所提方法能够加速突破间歇连通的航空自组网中信息可靠共享的难题,对于提高航行系统的应急响应和安全保障能力具有重要理论意义和实用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
监管的非对称性、盈余管理模式选择与证监会执法效率?
跨社交网络用户对齐技术综述
硬件木马:关键问题研究进展及新动向
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
融合社交网络入侵方式的网络安全态势感知研究
基于恒定分离损失的通用航空小尺度共享态势感知技术研究
面向增强态势感知的概率安全态势评估理论与方法研究
赛博空间安全态势感知研究