The research of micro-vibration suppression for precision equipment and instruments concerns advanced development of national defense technology (such as precise target shooting, high precision remote photo, etc.), and belongs to the important and urgent international frontier topic. In this proposal, the viscoelastic platform in the capsule of satellite (the environment of space micro-vibration with the working temperature of 5~30 degree) is considered as the research object. Dynamic dissipation mechanism of micro-vibration suppression viscoelastic material will be studied. Viscoelastic materials with different matrixes and additional agents will be developed, and the series of performance tests on these viscoelastic materials will be carried out. A kind of viscoelastic micro-vibration damper suitable for space environment will be developed, and micro-vibration dynamic tests and fatigue tests on the damper will be carried out considering different temperatures, frequencies and excitation amplitudes. The mathematical model of viscoelastic damper considering the effects of temperature, frequency and excitation amplitude will be proposed. Dynamic response analysis method and optimization design method on viscoelastic micro-vibration suppression system will be studied. Through this research, innovative researches and exploration should be made in the micro-vibration suppression viscoelastic material and damper, and theoretical and experimental supports will be provided for the technologies of micro-vibration control and viscoelastic vibration mitigation in our country. Obviously, this research has important scientific, military and economic significances for the development of the technologies of micro-vibration control, military, micro-manufacturing and micro-measurement.
对精密设备和仪器的微振动抑制研究事关国家军工技术的高精尖发展(如精确靶射、高精度遥拍等),属于重要而紧迫的国际前沿课题。本项目以卫星舱体内的粘弹性减振平台结构(空间微振动环境、工作温度为5~30度)为对象,研究粘弹性微振抑制材料的动力学耗散机理;研制不同基体和助剂的粘弹性材料,对研制的粘弹性材料进行系列性能试验;研制一种适用于空间环境的粘弹性微振阻尼器,对阻尼器在不同温度、频率和激励幅值下进行微振动动力试验和疲劳试验;提出能够反映温度、频率和激励幅值对阻尼器力学性能影响效应的动力学模型;研究粘弹性微振抑制系统的动力反应分析方法和优化设计方法。通过本项目研究,应在粘弹性微振抑制材料和阻尼器方面做出创新性研究和探索,为我国微振动控制技术和粘弹性减振技术的发展提供理论和试验支持。显然,项目研究对于微振动控制技术、军工技术、微制造技术和微测量技术的发展有着重要的科学意义、军事意义和经济意义。
本项目以研究适合于空间微振动抑制的粘弹性隔减振装置为研究目标,对空间微振动抑制的粘弹性减振材料、减振装置和减振平台进行了理论和试验研究,主要研究成果有:1)探究了粘弹性材料的微振抑制机理;2)研发了不同配合体系的粘弹性微振抑制材料;3)对粘弹性微振阻尼器进行了力学性能试验;4)提出了微振激励下粘弹性阻尼器微观链结构力学模型;5)对粘弹性微振抑制系统进行了动力响应分析和减振优化设计。在本项目的资助下共发表国内外核心期刊论文16篇,其中SCI收录论文13篇、EI收录论文14篇。发表国际国内会议论文6篇,获得授权国家发明专利3项、实用新型专利5项。出国访问5次,境外专家来华交流6次,培养博士研究生3人、硕士研究生6人。本项目的研究成果促进了粘弹性微振抑制技术的发展,对于国家航空航天技术、微振动控制技术、军工技术、微制造技术和微测量技术的进步具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于二维材料的自旋-轨道矩研究进展
粘弹性碰撞调谐质量阻尼器减振机理及优化设计研究
单面碰撞式调谐质量阻尼器结构减振理论与试验研究
金属橡胶剪切摩擦阻尼器耗能减振结构试验、理论和设计方法
自适应粘弹性碰撞调谐质量阻尼器(P-TMD)的减振机理及应用研究