Aiming at the urgent needs of the scientific research and clinical application of morphology dynamic imaging of the biological cell sub-structure, a method will be studied to reconstruct the 3D morphology of the cell sub-structure based on two non-orthogonal holograms, in order to achieve the fast imaging of the cell sub-structure. Among which in theory, the analytical relationship between double wavelengths holographic microscopy imaging will be revealed, a method to decouple the cell thickness and its refractive index will be proposed, and the mathematical relationship between the refractive index and phase distributions will be established. According to that the derivative operator is sensitive to the multi-medium interfaces, a fast derivative method for phase retrieval and its algorithm will be proposed. Based on the vector coordinate transformation and the principle of the maximum entropy function, the 3D reconstruction method of the cell sub-structure using two non-orthogonal phases in two interference channels, will be studied, and its numerical algorithm will be provided. Simultaneously, two common problems existed in some tomographic phase microscopy technologies will be solved. One is the non-orthogonal restriction of the imaging angle of a single microobjective. Another is the time-consuming problem caused by multidimensional tomography reconstruction. According to the theoretical results, the key experimental platform structure of the phase imaging will be designed, and by using the information collection features of a polarization array photoelectric sensor, a synchronous holographic microscopic imaging technique with a single microobjective, double wavelengths and dual interference paths, will be proposed, in order to realize the conception of fast reconstructing the 3D shape of the cell sub-structure. This work will provide both the basic theory and the key technique of an effective method for realizing the technology breakthrough of the 3D shape dynamic visualization of the cell sub-structure.
针对生物细胞亚结构形态动态成像在科学研究和临床应用的迫切需要,拟通过基于两幅非正交全息图谱下的细胞亚结构3D形态重构方法的研究,实现细胞亚结构形态快速成像。其中从理论上:揭示双频全息显微成像的解析关系,提出亚结构下细胞厚度与折射率的解耦方法,并建立其折射率分布与相位分布的数学关系;利用微分运算对多介质界面的敏感特性,给出快速微分相位恢复方法及其算法;基于矢量系变换和最大熵函数原理,探求非正交双通道相位图谱下的细胞亚结构3D重建方法,并给出数值算法,以解决单物镜成像夹角非正交性的限制和多维层析技术重建耗时的问题。根据理论研究成果,设计相位成像关键实验平台结构,利用偏振阵列光电传感器信息采集特征,提出单物镜、双频、双光路、同步全息显微成像技术,用以实现细胞亚结构3D形态快速重建的构思。为实现细胞亚结构3D形态动态可视化应用技术的突破,提供一种有效方法的基础理论和关键技术。
生物细胞亚结构形态动态成像和结构特征表征对生命科学和临床应用等领域的深入研究发挥了重要作用,本课题依据制定的研究目标和内容开展了研究,圆满实现了研究目标。其主要工作:分析了血细胞的形态特征,依据光相位特征建立了类球型细胞的折射率和厚度解耦方法,为探索细胞的内部结构提供了有效途径;分析了相位场和相位梯度关联,建立了相位梯度的计算方法,同时探索了多方向相位梯度的细胞内部结构判别方法和介质界面确定方法;利用偏导、范数和变换等数学运算,系统研究了单波长和双波长下的相位恢复方法,有效提升了相位恢复的精度、速率和鲁棒性,为细胞的瞬态高效成像提供了可能;基于矢量系变换和最大熵函数原理,建立了两非正交相位图谱下的细胞亚结构3D重建方法,给出了数值计算方法,解决了单物镜成像受光束夹角的限制和多维层析技术重建耗时的问题;基于理论方法研究成果,设计了双频、双通道同步全息非正交相位成像基本光路,搭建了非正交相位成像的平台,为理论研究了提供实验支持。通过上述内容的研究,可快速实现细胞亚结构3D形态动态可视化以及细胞的特征分析,为生命科学和临床应用研究提供了有效方法和研究新视角。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
低轨卫星通信信道分配策略
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
非正交基下批量血细胞无标记精准成像及其亚结构三维形态高效重建
稀疏信号相位恢复与纯相位重建方法研究
正交相位显微下的有核细胞亚表面3D特征识别方法与技术
定量显微相位恢复及相位成像