奇异流形上拟微分算子及非线性退化椭圆方程的研究

基本信息
批准号:11001135
项目类别:青年科学基金项目
资助金额:16.00
负责人:魏雅薇
学科分类:
依托单位:南开大学
批准年份:2010
结题年份:2013
起止时间:2011-01-01 - 2013-12-31
项目状态: 已结题
项目参与者:王丽霞,陈观伟,胡志广,王晓阳
关键词:
拟微分算子非线性退化椭圆方程奇异流形带权Sobolev空间
结项摘要

本项目研究两方面内容:一方面是在申请人博士论文的基础上继续研究奇异流形上的拟微分算子理论,主要目的是建立算子和象征之间的关系,利用Fourier变换,Mellin变换,量子化方法等工具,并构造拟微分算子的逆算子。主要内容为研究带有Corner奇异性流形上拟微分算子和不含有transmission property 但是带有奇异迹算子的边值问题,均为申请人在德国期间研究成果的后续工作。另一方面是建立棱流形(manifold with edge singularities)上带权Sobolev空间上相应的edge Sobolev不等式,Poincare不等式,等不等式,并证明最佳Sobolev常数,在此基础上研究棱流形上一类非线性退化椭圆方程的Dirichlet问题,此为申请人近期与国内同行合作成果的后续工作。

项目摘要

本项目主要研究两方面内容:一方面是研究奇异流形上的拟微分算子理论,具有Corner型奇异流形上建立算子和象征之间的关系,研究了Corner型算子的Mellin-Edge量子化理论。相关文章已经被SCI杂志接受。另一方面研究锥流形和棱流形上带权Sobolev空间相应的Sobolev不等式,Morrey不等式和Poincare不等式,并拟解决这两类奇异流形上的非线性椭圆方程的Dirichlet问题,已有5篇文章发表在高水平的国际期刊上.

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

涡度相关技术及其在陆地生态系统通量研究中的应用

涡度相关技术及其在陆地生态系统通量研究中的应用

DOI:10.17521/cjpe.2019.0351
发表时间:2020
2

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
3

环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例

环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例

DOI:10.11821/dlyj020190689
发表时间:2020
4

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

DOI:10.3799/dqkx.2020.083
发表时间:2020
5

钢筋混凝土带翼缘剪力墙破坏机理研究

钢筋混凝土带翼缘剪力墙破坏机理研究

DOI:10.15986/j.1006-7930.2017.06.014
发表时间:2017

魏雅薇的其他基金

批准号:11771218
批准年份:2017
资助金额:48.00
项目类别:面上项目

相似国自然基金

1

拟微分算子和退化椭圆型方程边值问题

批准号:10526023
批准年份:2005
负责人:孙永忠
学科分类:A0205
资助金额:3.00
项目类别:数学天元基金项目
2

拟线性椭圆型方程和方程组及流形上偏微分方程的研究

批准号:18870423
批准年份:1988
负责人:沈尧天
学科分类:A0304
资助金额:1.10
项目类别:面上项目
3

奇异流形上的非线性偏微分方程的定性性质研究

批准号:11871017
批准年份:2018
负责人:徐润章
学科分类:A0306
资助金额:53.00
项目类别:面上项目
4

退化椭圆偏微分方程的Morrey正则性与齐次群上的奇异积分方法

批准号:10871157
批准年份:2008
负责人:钮鹏程
学科分类:A0304
资助金额:27.00
项目类别:面上项目