This project will develop the new concept “D-A-π -A” organic sensitizers instead of traditional D-π -A ones for highly efficiency organic dye-sensitizing solar cells (DSCs) against the issues of low charge separation efficiency and narrow spectrum in p-type dye sensitizers for the dye-sensitized solar cells. Remarkably, the incorporated some novel structural low bandgap, strong electron withdrawing unit (perylene bisimide, diketopyrrolopyrrole, isoindigo, spuaraine) as additional electron trap would show several favorable characteristics in the areas of light-harvesting and efficiency: i) optimized energy levels, resulting in a large responsive range of wavelengths into NIR region; ii) improved the charge separation efficiency; iii) an improvement in the electron distribution of the donor unit to distinctly increase the photo-stability of synthetic sensitizers. Futhermore, we will develop Pt-loaded graphene as the catalyst for hydrogen evolution and high performance p-type dye-sensitized NiO to provide the driving force of water splitting, thus construct p-type dye-sensitized photoelectrochemical cells (DS-PECs); We will understand the underlying interface charge transfer dynamics at the interface of semiconductor/dye/catalyst in depth on the molecular level, improve the quantum efficiency of hydrogen production of water splitting driven by visible light and obtain new achievements with independent intellectual property rights.
本项目针对p-型染料敏化剂的电荷分离效率低和光谱窄问题,提出新增电荷分离“阱” (“electron trap”)的创新分子设计思路。在传统的 D-π-A 敏化染料的基础上,引入另外的强吸电子苝酰亚胺、萘酰亚胺苝酰亚胺、吡咯并吡咯二酮和靛蓝受体宽光谱单体,设计并合成一系列具有创新结构的高性能、低成本的 D-A-π-A 体系近红外p-型有机敏化染料。此外,通过利用它们单体的多个反应位点,合成一系列含多个吸附基团的所谓“H”型敏化剂,进一步提高p-型染料的电荷分离效率和吸收光谱。发展以负载Pt的石墨烯作为析氢催化剂,并以高性能的p-型染料敏化NiO光驱动水分解产氢,构建p-型染料敏化光电化学电池(DS-PECs),提高可见光驱动水分解产氢的量子效率。
(1)发展新型D-A-π-A 体系的绿色纯有机太阳能电池敏化染料. 本项目提出引入额外的强吸电子基团作为辅助受体基团,设计合成了一系列新型的含有强吸电子性能的吡啶喹喔啉、二氟苯并噻二唑、苯并噻二唑单元的D-A-π-A型染料分子。以吡啶喹喔啉作为额外强吸电子单元,茚并噻吩为给体的绿色染料电池在AM 1.5下其光电能量转化效率高达7.23%;.(2)开发新型的大给体有机染料在全固态染料敏化太阳能电池的应用. 开发了基于大给体有机染料的高效全固态染料敏化太阳能电池,在旋涂制备的1.3 μm的TiO2膜作为光阳极的全固态DSSCs 器件中,基于苯并噻二唑为辅助受体和三苯胺大给体的D-A-π-A型有机染料最高光电转换效率达到 7.51%,并且在约50% Sun弱光条件下获得了7.64%。该薄膜全固态DSSCs在具备高效的光电转换性能的同时也具有良好的半透明性,在光伏建筑一体化(BIPV)以及光伏窗户等领域具有极大的发展潜力;.(3)基于N-杂苝染料敏化太阳能电池及光解水性能的研究. 发展了基于N-杂苝为给体, 氰基乙酸和丙二腈绕丹宁为受体的染料敏化剂,系统研究了基于不同受体的染料对染料敏化太阳能电池和染料敏化光催化产氢性能的影响,结果显示丙二腈绕丹宁为受体的染料在420 nm~780 nm的光照射下, 产氢速率达到83.5 μmol h-1,显示出很好的应用前景。.(4)本项目在 J. Am. Chem. Soc., J. Mater. Chem. A, ACS Appl. Mater. Interfaces,ACS Sustainable Chem. Eng. 等国际重要知名期刊发表了27篇论文。申请发明专利4项,其中2项已授权。培养研究生8名。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
低轨卫星通信信道分配策略
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction
新型近红外非金属染料敏化剂的合成及性能研究
红外光解水制氢二维材料的理论研究
磷酸银复合微系统的可控构筑及其光解水制氢性能研究
固态Z型Pt/Si-Gn-WO3材料光生电子行为及其光解水制氢性能研究