The manganese dioxide with different crystallographic phase is one of important electrode materials of electrochemical capacitors. However, its cycling stability and energy storage mechanism still would further to be investigated. Based on our preliminary research experiences in δ-MnO2 with wide one-dimensional channel, α-MnO2, δ-MnO2, buserite, RUB-7, todorokite etc. with different wide one-dimensional channel and λ-MnO2 with wide three-dimensional channel are proposed. In detail, The different crystallographic nanostructured MnO2 electrode materials will be prepared by hydrothermal method. X-ray diffraction, inductively coupled plasma, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption at 77 K will be used to investigate the crystal structure,element analysis, morphology, specific surface area and porosity of the composites, respectively. Their electrochemical prorerties will be evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The structure-activity relationship between structure and electrochemical performance of the prepared MnO2 materials will be investigated, and the matching relations between channel size of MnO2 and size of the electrolyte ionic will be further discussed, and the energy storage mechanism will be studied. In addition, some nanostructured MnO2 with super electrochemical performances can be obtained. Detailed and accurate expermental exerience about MnO2 can be provided for the boost of the MnO2 application and theory.
二氧化锰存在不同晶型,是电化学电容器的一种重要电极材料,但是,其循环稳定性能与储能机理仍有待进一步研究。基于申请人对具有一维大通道结构的δ-MnO2取得初步研究结果,本项目提出对具有一维大通道结构的α-MnO2、δ-MnO2、Buserite、RUB-7、Todorokite与三维通道结构的λ-MnO2等展开系统研究。具体地说,采用水热法,制备上述不同晶型纳米二氧化锰,并分别采用XRD、ICP、SEM、TEM、XPS、N2吸附/脱附等物理方法对其晶型、元素分析、形貌、比表面积和孔结构进行表征;用循环伏安、恒流充放电和交流阻抗等电化学方法研究其电化学性能,以考察MnO2的结构和电化学性能间的构效关系,探索MnO2不同通道结构与电解质离子大小的匹配关系,进而研究其储能机理。同时,制备出一些性能优良的MnO2电极材料,为后续MnO2的实验制备、理论研究与实际应用提供翔实的实验依据与理论基础。
二氧化锰具有价廉、环境友好和多晶型等特点,可做电化学电容器的电极材料。本课题对大通道的α-MnO2、δ-MnO2与RUB-7(OMS-5-MnO2)展开了研究。.无定型α-MnO2在0.5 M Li2SO4 中,1 mV s-1时的比电容为 110.2 F g-1,500 次循环性能好。.δ-MnO2纳米线在6 M KOH中,2 mV s-1时的比电容为127.60 F g-1,2500次循环性能好;在0.4 A g-1时,AC/6 M KOH/δ-MnO2装置的功率密度为36.45 W kg-1,能量密度为10.33 Wh kg-1。纳米线δ-MnO2在0.5 M Li2SO4中,1mV s-1比电容为 96.7 F g-1,800 次循环性能好。在1M LiOH中,1mV s-1时,比电容为218 F g-1,且有大电流充放电特性。.以δ-MnO2为宿主,制得Na0.95MnO2、Na0.35MnO2、Na0.35MnO2/CNT与K0.19MnO2等材料,组装成电池的性能如下:.Zn/0.5 M Zn(CH3COO)2、CH3COONa/Na0.95MnO2电池工作电压为1.4 V,能量密度达78Wh kg-1,在1~2 V、4 C下,1000次循环性能好。.AC/0.5 M Na2SO4/Na0.35MnO2电容器,在0~1.8 V,108 W kg-1 和2.2 kW kg-1 时,能量密度分别为42.8和31.8Wh kg-1。在25 C下,5000次循环性能好。CNT可改善Na0.35MnO2的电化学性能,AC/0.5 M Na2SO4/Na0.35MnO2/CNT装置在0~1.8 V,3 kW kg-1时,能量密度达33.5 Wh kg-1,在1A g-1下,10000次循环性能好。.AC/0.5 M K2SO4/K0.19MnO2•0.3H2O装置在0~1.8V,156.8 W kg-1时的能量密度为41.3 Wh kg-1,2500次循环性能好。.纳米K-OMS-5在0.5 M K2SO4中有大的比电容和2000次循环稳定性。纳米OMS-5-MnO2 在0.5 M Na2SO4 中,0.1 A g-1时,比电容为170.3 F g-1,800次循环性能好。.纳米大通道结构 MnO2材料,具有商业、国防应用前景。.依靠该项目,还研究了其他电极材料。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
地震作用下岩羊村滑坡稳定性与失稳机制研究
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
新型超级电容器电极材料-MnO2/中间相炭微球纳米复合电极的制备及储能机理研究
柔性SiC纳米阵列电极材料的制备及其超电容特性研究
含氮纳米层次结构碳材料的可控制备及其超级电容器储能机理
原位修饰石墨烯/MnO2纳米线间层复合材料的制备及其超级电容特性研究