Derailment is serious safety accident in train operation, and preventing the occurrence of train derailment is a key problem faced by the railway operation organization around the world. Therefore finding the derailment mechanism and the active control method for preventing train derailment accidents is a key scientific problem which stands in front of high-speed train’s development and need to be solved imminently. Under this situation, this project targets to investigate the dynamic derailment mechanism and provide the active control methods for reducing the derailment risk of high-speed trains operating in disaster environment. To achieve this goal, our research will develop theory models for predicting the high-speed train derailment behavior and its safety control under disaster environments based on the vehicle-track coupling dynamics theory, the wheel-rail rolling contact theory and the control theory. We will focus on the study of the effects of the disaster boundaries (such as earthquake, strong crosswind, etc.), the track structures, the wheel-rail contact conditions, the emergency braking action, and the nonlinear properties of the active suspensions on the dynamic derailment behavior, the key safe indices, and the derailment boundary of high-speed trains. Based on the numerical simulations, we will show the derailment mechanisms of high-speed trains running in the environments with strong earthquakes and crosswinds, the roles of the braking action and the active suspensions in preventing train derailments, as well as the emergency braking strategies and the control methods of the active suspension systems for reducing train derailment potential. The research results can be applied to improve the active safety technology of high-speed trains, and provide theoretical basis for the further optimal design of Chinese high-speed train.
列车脱轨是非常严重的安全事故,防止脱轨事故的发生是铁路运营机构最关注的问题,而高速列车脱轨机理及其主动安全控制是高速铁路发展中亟待解决的科学问题。本项目综合运用车辆-轨道耦合动力学理论、轮轨滚动接触理论、控制理论,建立灾害环境下高速列车脱轨机理与脱轨主动控制分析模型,研究地震和强风等灾害环境边界条件、线路结构形式、轮轨界面接触状态、紧急制动操作、主动悬挂非线性特性对高速列车动态响应特征、关键安全性指标及脱轨边界的影响规律,揭示地震与强风两种典型灾害环境下高速列车的动态脱轨机理,探明紧急制动操作和主动安全悬挂系统对高速列车脱轨行为的作用机制与影响机理,提出降低灾害环境下高速列车脱轨风险的紧急制动策略与主动悬挂系统控制方法。研究成果可用于提升高速列车运行安全防护技术,为我国高速列车优化设计提供理论基础。
我国高铁网络穿越诸多地震、强风等地质气候复杂地带,灾害环境下高速列车安全运行面临极大挑战。世界各地由灾害环境因素引起的列车脱轨事故频繁发生,保障复杂运营环境下高速列车安全运行,对我国高速铁路健康持续发展至关重要。本项目针对灾害环境下高速列车脱轨安全与主动控制问题,通过建立灾害环境高速列车非线性动态脱轨仿真分析模型,开展了地震、横风等灾害环境下高速列车的脱轨安全与主动控制方法的理论研究,揭示了灾害环境下高速列车的动态脱轨机理,提出了强风环境下高速列车主动安全控制方法与地震环境下高速列车紧急安全制动策略。研究成果可支撑我国高速列车的进一步优化设计。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
中国参与全球价值链的环境效应分析
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
城市轨道交通车站火灾情况下客流疏散能力评价
复杂环境状态下高速列车动态脱轨机理的研究
重载铁路货物列车脱轨机理与控制研究
高速列车主动安全控制的关键基础研究
高速列车级联H桥整流器主动安全控制与调制策略研究