Mobile social apps addiction has drawn extensive social attention due to serious and even fatal outcomes. Widespread concerns thus have inspired research in different disciplines. However, the focus so far tends to be on diagnostics and cognitive predictors. Although a significant line of literature exists in the area of personal-computer based technology addiction, the mechanism underpinning mobile social apps use differs significantly because the specific and unique characteristics have given rise to a fundamentally different usage context with new usage behavioral patterns. Motivated to comprehensively investigate this issue, this study attempts to explore the following questions: ① How should we effectively define mobile social apps users as addictive ones? ② What are the specific behavioral patterns of those addictive users? ③ How can we intelligently identify those addicted users of mobile social applications? Based on the rational addiction model, this study first defines addiction behavior of mobile social apps by incorporating the substitution/complemention effect among different mobile social apps. Using panel data analysis and field experiment, we then analyze and mine the specific behavior patterns of addictive users. We further use machine learning to build the intelligent recognition system to discover and identify those addictive users in time. The results of this study are helpful to users themselves and the society as a whole to better understand and master addiction behavior, and to provide suggestions for intervention and treatment of mobile social apps addiction.
移动社交应用成瘾因其严重的后果引发了广泛的社会关注。然而,目前大部分研究倾向于关注诊断判别和影响因素分析。虽然已有大量针对传统技术成瘾的文献研究,但本研究认为移动社交应用因其独特的使用特征产生了完全不同的使用环境与行为模式,因而存在显著不同的行为机制。为了全面研究移动社交应用成瘾这一现象,本课题主要研究以下三个问题:①如何科学有效地判别移动社交网络用户成瘾与否?②移动社交网络成瘾用户有哪些行为特征?③如何智能识别移动社交应用成瘾用户?在现有研究的基础上,本项目拟基于理性成瘾模型及移动应用间的替代互补性,结合客观数据和田野实验对用户是否成瘾进行判别,并对成瘾用户的行为特征进一步分析和挖掘。最后,利用机器学习的方法构建成瘾用户智能识别系统,以期及时发现并识别成瘾用户。研究结果有利于用户个人及社会更好地理解社交应用成瘾行为,掌握行为规律,并为干预和治疗移动社交应用成瘾提供依据。
随着移动应用市场的快速发展,移动社交网络的成瘾性使用因其严重的后果得到了极大的社会关注。然而,目前大部分研究倾向于关注诊断判别和影响因素分析,对于移动社交应用成瘾与否的科学判别、成瘾个体的行为特征与智能识别等方面尚未达成一致的结论。虽然已有大量针对传统技术成瘾的文献研究,但本研究认为移动社交网络因其独特特征产生了完全不同的使用环境与行为模式,因而存在显著不同的行为机制。项目组成员按照项目计划内容,结合客观数据科学判别用户成瘾与否,基于理论系统地归纳成瘾用户的行为特征,使用前沿方法构建成瘾用户智能识别系统,为研究移动社交网络成瘾开拓了新视角,进一步发展了成瘾的相关理论。研究结果有利于用户个人及社会更好地理解社交应用成瘾行为,掌握行为规律,并为干预和治疗移动社交应用成瘾提供依据。相关成果发表于SCI/SSCI期刊如Journal of Management Information Systems, Journal of the Association for Information Systems, Information & Management, Internet Research, Journal of the Association for Information Science and Technology, Journal of Business Research,Information Technology & People等。
{{i.achievement_title}}
数据更新时间:2023-05-31
跨社交网络用户对齐技术综述
拥堵路网交通流均衡分配模型
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
基于细粒度词表示的命名实体识别研究
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
移动社交网络成瘾性使用的驱动因素与负面影响研究
社交媒体成瘾性使用的驱动因素、负面影响和作用机制研究
触感行为特征识别的移动智能终端隐式身份认证方法研究
移动APP用户采纳后行为研究——深度使用与应用内购买