Effective removal of crude oils, petroleum products, organic solvents, and dyes from water is of significant in oceanography, environmental protection, and industrial production. Porous materials with interconnected structure and hydrophobic surface were successfully employed into the separation of oil from water. TO date, however, most of the previous absorbents were not widely used in many situations because of certain drawbacks such as low adsorption capacity, poor oil recoverability and poor absorbent recyclability. In particular, the absorbed oil can only be recovered by distillation by the previous means. But in the case of recovering high boiling point or low volatile solvents, distillation recycling method loses its practical significance. To improve the recycling performance, fire-resistant property is incorporated into the hydrophobic porous materials. Thus, the low boiling point oils are recovered by distillation as before, whilst the low volatile solvent-absorbed absorbents can be directly burned for recycling use as the excellent fire-resistant properties of the absorbents. However, directly burning would not be an appropriate way when the spilled chemical reagents may have other further use. To further enhance the recyclability of the oils and the absorbents, the strategy of utilizing compressible absorbents under absorption/squeezing recycle way is a vital candidate. The compressible porous materials can be regenerated by simply squeezing in the separation process without any complex operation. Unfortunately, some viscous oils face challenge in this simple squeezing recycling process, but it can be recycled by the absorption/combustion way. Therefore, a versatile spilled oil recovered material would be a multifunctional comprehensive porous material integrating hydrophobility, fire-resistance and flexibility, possessing of distillation, combustion and squeezing regenerate ways for different types of spilled oil. Great effort should be devoted to exploring a more facile and straightforward strategy to prepare lighter and more robust fire-resistant, compressible oil absorbents, especially aiming at enhancing the possibility of large-scare industrial production. Herein, we obtain an ultralight, fire-resistant, and compressible melamine-based carbon aerogels by using a facile and easily scalable fabrication technique based on superhigh internal phase emulsions. We believe that such cheap foam-derived novel hydrophobic aerogels with good performance will have great potential for industrial applications and oil spill treatments.
溢油和含油废水的排放造成了严重的环境污染,带来了破坏性的生态灾难和巨大的经济损失。因此,多孔吸油材料的研究具有重大的科学意义和实用价值。而传统的吸油材料存在油水选择性不高、油可回收程度差、重复使用性不佳等缺点。高内相Pickering乳液模板技术可以非常方便地制备有机/无机的多孔材料,在微纳结构材料构建方面具有重大应用前景。本课题采用纳米粒子稳定的超高内相Pickering乳液为模板制备多功能吸油材料:疏水、超轻、阻燃、可压缩、可降解。研究其对不同油污的清理效果。考察超高内相Pickering乳液形成规律,了解影响其稳定性的因素,探索高内相Pickering乳液固化规律,探讨固化条件对泡沫结构与性能的影响,掌握泡沫结构形成的调控因素,进一步考察泡沫结构、表面疏水改性、高温碳化对吸油性能的影响。研究目标是制备高选择性、油可回收、材料可再生的优质多孔吸油材料。
溢油和含油废水的排放造成了严重的环境污染,带来了破坏性的生态灾难和巨大的经济损失。高内相Pickering乳液模板技术可以非常方便地制备有机/无机的多孔材料,在微纳结构材料构建方面具有重大应用前景。本课题采用超高内相Pickering乳液模板技术制备廉价的多孔泡沫,通过改性或者碳化制备高性能和多功能吸油材料,研究其在油污清除领域的应用。考察了孔和空腔结构的调控因素,研究了多孔材料的表面改性及其碳化机理,了解泡沫结构和碳化因素对材料吸油性能的影响规律,探讨了多样性再生的机制,实现材料的高效循环利用。1、研究了木质素纳米粒子稳定水包油Pickering高内相乳液的条件和机理。并以该乳液为模板,制备得到密胺泡沫,热裂解处理得到疏水和阻燃的碳基气凝胶,并系统地探索了该气凝胶在油水分离中的应用。2、以木质素和二异氰酸酯为原料制备得到有机凝胶,并在常温常压下干燥得到木质素基干凝胶。这种干凝胶不需要任何的化学修饰就具有良好的疏水性和自清洁功能,拓宽了木质素这种天然可再生资源的实际应用范围。3、以天然高分子和密胺泡沫为原料,、通过热裂解和硅烷化修饰、燃烧辅助原位碳沉积、浸泡-吸附的方法,制备具有超轻、疏水、阻燃和具有弹性的多孔泡沫。4、以密胺泡沫为模板,通过ATRP聚合将温度响应性的聚N-异丙基丙烯酰胺接枝在密胺泡沫支架表面形成温度响应性的油水分离材料;将pH响应性的聚4-乙烯基吡啶接枝在泡沫表面形成pH响应性的油水分离材料,实现温度或pH可控油水分离。5、以密胺泡沫为模板,聚多巴胺为粘结剂,通过热溶剂法将ZIF-8金属有机框架生长在密胺泡沫支架表面形成ZIF-8包覆的三维多孔疏水材料;Cu/ZIF-67为催化剂,聚二甲基硅氧烷为Cu/ZIF-67的保护层以及疏水剂。通过简单温和的一步浸泡法制备了具有聚二甲基硅氧烷膜层保护的超疏水Cu/ZIF-67负载密胺泡沫。并对该材料在油水分离应用和有机相催化反应进行探索。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
中低内相乳液模板法多孔吸附剂的可控合成及其对铷、铯吸/脱附性能研究
功能多孔聚合物分离材料的高内相乳液模板法制备及性能研究
以金属有机骨架为高内相乳液模板构筑多孔复合物整体材料的研究
聚合物微球稳定的高内相乳液模板法合成自修复开孔材料