Massive MIMO has emerged as a promising technique for wireless communications to effectively improve the spectral efficiency. Due to the increase of the network users as well as the development of multi-antenna user equipment, the number of antennas at the user side grows rapidly. Considering the number of antennas at the base station is limited due to the hardware cost, energy consumption and so on, the antenna numbers at both sides of massive MIMO gradually become the same, which imposes a pressing challenge on signal detection for a better performance-complexity tradeoff. To this end, this project proposes lattice Gaussian sampling for massive MIMO detection. Specifically, its core idea tries to solve the detection problem according to a sampling way, and the merits of sampling such as low complexity and high flexibility are fully exploited to alleviate the "curse of dimensionality". In this project, on the basis of our previous research achievement, we shall focus on the fundamental research on efficient, reliable and flexible lattice Gaussian sampling detection for massive MIMO, which can be seen as inter-discipline of lattice theory, sampling technique and signal detection. To be more specific, our project will include three key research aspects: (1)the theory of lattice Gaussian sampling, (2)the method of lattice Gaussian sampling detection for massive MIMO, (3)the enhancement of lattice Gaussian sampling detection for massive MIMO. In a word, this project will aim at providing the new theoretical and technical foundation for the massive MIMO detection technologies.
大规模MIMO是提高频谱利用率,缓解频谱资源供求矛盾的关键技术之一。随着网络接入用户数量的迅猛增长和终端设备的多天线普及,大规模MIMO用户侧的天线数量迅速增加,使得收发两端的天线数量逐渐趋于一致,这在性能和复杂度两个方面都对基站侧信号检测技术提出了更高的挑战。为此,本项目提出基于格点高斯采样的大规模MIMO检测,其核心思想是将依据于最小欧式距离判定的信号检测问题转化为基于最大采样概率判定的信号采样问题,从而通过采样进行检测,利用采样低复杂度、高灵活性的特点来突破高维检测瓶颈。基于此,本项目将依据已有研究基础,重点开展格理论、采样以及信号检测交叉理论研究,内容包括:(1)格点高斯采样理论,(2)基于格点高斯采样的大规模MIMO检测方法,(3) 基于格点高斯采样的大规模MIMO检测增强机制。本项目将为大规模MIMO检测提供新思路、新方法,为频谱效率提升提供坚实的理论基础和技术支撑。
大规模MIMO是提高频谱利用率,缓解频谱资源供求矛盾的关键技术之一。随着网络接入用户数量的迅猛增长和终端设备的多天线普及,大规模MIMO用户侧的天线数量迅速增加,使得收发两端的天线数量逐渐趋于一致,这在性能和复杂度两个方面都对基站侧信号检测技术提出了更高的挑战。为此,本项目提出基于格点高斯采样的大规模MIMO检测,其核心思想是将依据于最小欧式距离判定的信号检测问题转化为基于最大采样概率判定的信号采样问题,从而通过采样进行检测,利用采样低复杂度、高灵活性的特点来突破高维检测瓶颈。基于此,本项目将依据已有研究基础,重点开展格理论、采样以及信号检测交叉理论研究,内容包括:(1)格点高斯采样理论,(2)基于格点高斯采样的大规模MIMO检测方法,(3) 基于格点高斯采样的大规模MIMO检测增强机制。本项目将为大规模MIMO检测提供新思路、新方法,在采样理论,检测方法以及增强机制的研究目标都已实现,在解决采样与检测两个关键科学问题的同时,构建了一个完善且统一的采样检测研究框架,从而实现高效、可靠、灵活的大规模MIMO检测。为频谱效率提升提供坚实的理论基础和技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
低轨卫星通信信道分配策略
自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例
内点最大化与冗余点控制的小型无人机遥感图像配准
氯盐环境下钢筋混凝土梁的黏结试验研究
基于概率计算的大规模MIMO检测方法
基于高斯过程模型的高动态三维表面智能采样与重构方法研究
基于大规模MIMO的空间和极化信道建模理论与方法研究
大规模流体动画的压缩采样理论与方法