Articulated Steer Vehicles that travel on unstructured roads experience severe vibration and poor stability. Studies have shown that suspension systems effectively attenuate multi-dimensional body vibration. However, the instability mechanism of articulated steer vehicles after suspension systems are added is not yet clear. Relevant vibration absorbing and instability control measures also need to be further investigated. This project proposes the use of suspension systems with semi-active rocker arms for articulated steer vehicles and studies the multi-dimensional vibration absorption and instability control. First, a kinetic model of articulated steer vehicles is established. Considering the interaction between comfort and stability, the suspension system is optimized and the suspension stiffness–damping matching under different conditions is studied. On this basis, the instability mechanism of articulated steer vehicles is investigated and the inhibitory effects of different adjusting measures on vibration and instability are analyzed. Finally, a control architecture with the synergistic actions of the suspension system, the steering, braking, and actuator mechanisms is proposed. By using the theories of fuzzy and synergic control, the multi-dimensional vibration absorption and instability control strategies for articulated steer vehicles is determined and relevant experimental studies are conducted. The research findings of this project will provide new research basis and methods for the vibration absorption and instability control of articulated steer vehicles. We expect the results to have great academic significance and application value.
铰接转向车辆在非结构路面上作业和行驶时振动剧烈、稳定性差,已有研究表明悬架系统是衰减车身多维振动的有效手段,然而,增加悬架系统后铰接转向车辆的失稳机理尚未明确,相关的减振及失稳控制策略有待于进一步研究。本项目提出用于铰接转向车辆的半主动摇臂悬架系统,并基于此开展铰接转向车辆的多维减振及失稳控制研究。首先建立铰接转向车辆的动力学模型,考虑舒适性和稳定性的耦合效应对悬架系统进行优化,研究不同工况下悬架刚度和阻尼之间的匹配关系;在此基础上,研究铰接转向车辆的失稳机理,并分析不同调节措施对振动及失稳的抑制效果;最后,提出“悬架系统-转向系统-制动系统-工作装置”协同作用的控制体系架构,基于模糊控制及协同控制理论,确定铰接转向车辆的多维减振及失稳控制策略,并开展相关试验研究。本项目的研究成果将为铰接转向车辆的减振和失稳控制提供新的研究基础和方法,具有重要的学术意义和实际应用价值。
铰接转向车辆行驶路面复杂、工作环境恶劣,在作业过程中驾驶员承受剧烈的振动冲击,长时间的驾驶作业严重影响操作人员的健康;同时,冲击振动也会加快车辆的零部件失效,并且降低其作业效率。本项目以典型铰接转向车辆-轮式装载机为研究对象,结合其工作行驶特性和自身结构特点,对其进行改进设计,增加油气悬架系统,开展了考虑悬架系统的铰接转向车辆多维减振及失稳控制研究。.首先,建立了包含油气悬架系统的铰接式装载机的多体动力学和虚拟样机模型,并分析了不同连通方式油气悬架系统的刚度和阻尼特性,研究了油气悬架系统对轮式装载机的乘坐舒适性,行驶稳定性和作业稳定性的影响。.基于Kriging方法建立了油气悬架参数与装载机车身加速度之间的近似响应关系,建立了以装载机车身加速度最小为目标函数,以悬架系统参数作为优化变量,以车辆行驶稳定性为约束条件的优化模型,采用粒子群算法对所建立的模型进行优化分析,得到了装载机在不同工况下的油气悬架系统参数优化结果。.提出了基于路况识别的油气悬架主动控制方法,利用学习向量量化神经网络方法实现对装载机行驶路况识别并进行验证。基于装载机油气悬架优化结果,制定模糊控制规则,实现其在不同路面激励、不同行驶速度下的悬架参数主动调整。.本课题的研究成果将为铰接转向车辆的减振提供新的研究基础和方法,有助于提高国产装载机在舒适性和稳定性领域的技术水平,提升其在国际市场上的竞争力。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
面向云工作流安全的任务调度方法
双转向系统车辆的悬架和转向系统耦合机理/设计
车辆转向系统和互联悬架集成控制策略及智能优化方法研究
车辆半主动悬架系统失稳机理及稳定性控制研究
车辆主动悬架与电动助力转向系统的匹配理论及其协调控制