This project is for the modulation of narrow band infrared thermal radiation which is a research hotspot. We put forward simple one-dimensional dielectric multilayers to confine the electromagnetic wave near the interface between the metal and artificial dielectric interface and enhanced the resonant wavelength absorption. Such a structure to achieve the line width than the international reported result using multiple quantum well intersubband transitions and two-dimensional photonic crystal resonance effect of the best level narrower for above 30% (Q of 100), with high emmission of narrowband radiation structure. The structure is not only easy to control the line width and wavelength of infrared radiation, but also the structure is very simple, so it can be made in large area and low cost. This project will use the active and passive infrared scanning near-field optical imaging system to study the micro near infrared radiation characteristics, in order to reveal the morphology and surface roughness on the radiation characteristics of the influence law and mechanism, to clarify the resonant photonic bandgap of the metal dielectric interface of artificial light field control mechanism and interface impedance matching the frequency selection mechanism, reveal the law of effect of dielectric multilayers on the interface of light field control, high Q, high emission rate of large area infrared narrowband radiation structure preparation, provides a simple and efficient solution for the narrow-band infrared thermal radiation control.
本项目针对红外窄带热辐射调控的研究热点,提出利用简单一维介质多层膜对电磁波在金属-人工介质界面附近的限制效应和共振增强吸收,来实现线宽窄比国际采用多量子阱子带间跃迁与二维光子晶体共振效应所报道最佳水平还窄30%(Q值100)以上、辐射率高的红外窄带热辐射结构。该结构不但易于实现对红外辐射线宽和波长的调控,而且结构非常简单,可实现大面积、低成本制备。. 本项目还将采用主、被动式扫描红外近场光学成像系统来研究其微观近场红外辐射特性,以揭示微观表面形貌和粗糙度等对辐射特性的影响规律与机制,澄清光子带隙对金属-人工介质界面光场调控的作用机制和界面阻抗匹配的频率共振选择机理,揭示介质多层膜结构对界面光场调控的作用规律,实现高Q、高发射率的4英寸大面积红外窄带辐射结构制备,为红外窄带热辐射调控提供了新的简易、高效解决方案。
本项目针对当前红外窄带辐射源结构复杂、带宽不够窄、发射率不够高等不足,提出了一种非常简单的金属-人工介质多层膜结构,通过对金属-人工介质之间界面的光场调控,将电磁波的能量束缚在金属表面附近,对共振波长进行选择性强吸收,从而实现高效的红外窄带辐射。该结构理论上具备辐射波长自由调节,带宽可以任意压缩,发射率可达到1的特点。研究结果表明金属与人工介质多层膜之间的介质层可视为光学微腔,用于调节介质腔模从而实现腔模式与金属缺陷模式匹配耦合,通过对共振波长选择性强吸收来增强超窄带红外吸收效应。该结构在兼具优异性能的同时,制备工艺及流程非常简单,采用常规光学镀膜工艺就能实现4英寸以上红外窄带辐射源的大面积制备,从而消除了超材料等微纳结构的加工制约瓶颈。本项目通过采用自主搭建的变角度偏振红外光学成像系统来研究其红外辐射特性,验证了偏振态和入射角度等对辐射特性的影响规律与机制。简单的金属-介质多层膜结构与制备工艺为红外窄带热辐射调控提供了新的简易、高效解决方案。项目期间共发表标注论文25篇,其中SCI论文24篇,授权国家发明专利3项,申请国家发明专利3项,撰写学术专著2章,培养研究生共7名。项目期间,负责人入选国家“万人计划”,获上海市技术发明一等奖(第二)、国际先进材料协会奖章(IAAM Medal)等奖励,团队获上海市科技系统“青年五四奖章(集体)”称号,刘清权博士获上海“超级博士后”计划资助。
{{i.achievement_title}}
数据更新时间:2023-05-31
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
低轨卫星通信信道分配策略
感应不均匀介质的琼斯矩阵
高压工况对天然气滤芯性能影响的实验研究
极地微藻对极端环境的适应机制研究进展
电磁超介质的红外相干热辐射特性及其近场传输机理
利用复杂特异介质调控电磁辐射特性
过渡金属硼化物薄膜的高温红外辐射特性及发射率调控机理研究
金属-介质多层纳米颗粒阵列的光热效应与辐射特性