The contamination of microplastics has become a global concern due to its vast and growing threat to the environment. Recent studies suggested that continued fragmenting of microplastics into nanosized particles must occur in the nature. The nanoplastics may constitute more serious potential hazards to the environment and human health than the bigger counterparts, although there is less research data for reference currently. In this project, we intend to develop the characterization techniques for microplastic particles and disclose the possible adverse effects from the exposure to these particles by the help of present advanced knowledge from nanoscience. Firstly, the integrated procedures will be developed for the separation, extraction, purification and characterization of micro- and nano-sized microplastics using sensitive analytical techniques that have been developed for the detection and quantification of engineered nanoparticles in nanoscience. A spike-in control strategy will be adopted for monitoring the extraction efficiency of microplastics in the mimic and real samples. Secondly, the toxicological effects of microplastics will be tested by a list of well-designed toxicology alternatives at the cellular level. Then, the observed in vitro results shall be verified using the corresponding dosages in the mice. Finally, we will consider developing the high throughput analysis techniques and related QSAR model along with the progress of this project. The applications of these state-of-the-art technologies will contribute to the understanding of the relations between physicochemical properties of microplastics and the possible induced toxic outcomes. This research will lay a substantial foundation on which the evaluation standards and regulations relevant to the microplastic contamination would be established.
微塑料是一种新型环境污染物,已经受到人们的广泛关注。研究显示,较大的微米级塑料颗粒物可以经过片段化过程形成纳米塑料颗粒物,对环境与人体健康带来潜在的更为严重的危害,但当前相关研究很少。本项目将纳米分离表征相关技术及纳米毒理学知识体系,推广应用于微塑料污染物的研究中,研究微塑料颗粒物微纳全尺度范围下的分离表征与毒理学效应。首先,采用掺比对照的方案建立环境样品中微纳塑料颗粒物的浓缩分离、提取纯化与表征方法,大量采用纳米科学领域灵敏的检测设备与分析方法;其次,针对微纳塑料颗粒物在细胞水平上建立分层级,成体系的替代毒理学研究方法,并在小鼠动物水平上进行生物学效应的对比研究;最后,发展高通量分析检测技术并探索QSAR预测毒理学研究方向,以期整合形成针对微纳塑料颗粒物的表征与毒性效应研究的系统方案。本研究将为微纳塑料环境污染物研究提供参考方法,同时也为相关标准及法规的制定奠定必要的理论和实践基础。
在人们的日常生产生活中,微纳塑料(M/NPLs)作为一种新型环境污染物已经形成了实际的人体长期暴露,并可能导致明显的健康危害。本项目通过检测多家塑料制品生产现场M/NPLs的环境暴露水平,理清了在此种M/NPLs高污染高暴露现场的环境暴露特征,建立了包括M/NPLs在内的环境污染物的采集与表征方法;分别从不同的暴露途径研究M/NPLs对机体产生的影响,结合毒理学研究,探索性地将计算毒理学方法应用于环境污染物的暴露评估与风险评价。对于消化道暴露途径,通过利用动物、细胞、体外及肠道菌群等不同层级模型开展实验研究,揭示M/NPLs造成人体健康危害的后果以及诱发毒性效应的机制;针对包括M/NPLs与雾霾等细及超细颗粒物容易通过呼吸道造成人体暴露的问题,本项目不仅围绕其可能产生的心血管毒性问题开展实验生物学研究,还发展了成体系的替代毒理学研究方法,如建立计算流体动力学模拟(CFD)评估颗粒物呼吸道沉积剂量的基础方法理论,并开发出可供实际推广应用的软件工具。本项目为研究包括M/NPLs在内的新型环境污染物的人体暴露与健康危害提供了可供参考的基础数据与研究方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
论大数据环境对情报学发展的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
土壤微塑料胁迫下蚯蚓生态毒性效应及组学解析
聚苯乙烯微塑料对壬基酚的生物累积和毒性效应影响研究
微塑料对重金属在斑马鱼体内富集分布的影响及毒性增敏效应机理
微塑料对人体肠道毒性及屏障干扰作用的体外模型研究